Archive for vaccine

on Astra and clots

Posted in Books, Kids, pictures, Statistics with tags , , , , , , , , , , , , on March 16, 2021 by xi'an

A tribune this morning in The Guardian by David Spiegelhalter on having no evidence that the Oxford/AstraZeneca vaccine causes blood clots.

“It’s a common human tendency to attribute a causal effect between different events, even when there isn’t one present: we wash the car and the next day a bird relieves itself all over the bonnet. Typical.”

David sets the 30 throboembolic events among the 5 million people vaccinated with AstraZeneca in perpective of the expected 100 deep vein thromboses a week within such a population. Which coincides with the UK’s Medicines and Healthcare Products Regulatory Agency statement that the blood clots are in par with the expected numbers in the vaccinated population. (The part of the tribune about the yellow card reports, based on 10 million vaccinated people, reiterates the remark but may prove confusing to some!) As for hoping for a rational approach to the issue,  … we would need a different type of vaccine, far from being available! As demonstrated by the decision to temporarily stop vaccinating with this vaccine, causing sure additional deaths in the coming weeks.

“Will we ever be able to resist the urge to find causal relationships between different events? One way of doing this would be promoting the scientific method and ensuring everyone understands this basic principle. Testing a hypothesis helps us see which hunches or assumptions are correct and which aren’t. In this way, randomised trials have proved the effectiveness of some Covid treatments and saved vast numbers of lives, while also showing us that some overblown claims about treatments for Covid-19, such as hydroxychloroquine and convalescent plasma, were incorrect.”

probability that a vaccinated person is shielded from COVID-19?

Posted in Books, Statistics, Travel, University life with tags , , , , , , , , , , , , on March 10, 2021 by xi'an

Over my flight to Montpellier last week, I read an arXival on a Bayesian analysis of the vaccine efficiency. Whose full title is “What is the probability that a vaccinated person is shielded from Covid-19? A Bayesian MCMC based reanalysis of published data with emphasis on what should be reported as `efficacy'”, by Giulio D’Agostini and Alfredo Esposito. In short I was not particularly impressed.

“But the real point we wish to highlight, given the spread of distributions, is that we do not have enough data for drawing sound conclusion.”

The reason for this lack of enthusiasm on my side is that, while the authors’ criticism of an excessive precision in Pfizer, Moderna, or AstraZeneca press releases is appropriate, given the published confidence intervals are not claiming the same precision, a Bayesian reanalysis of the published outcome of their respective vaccine trial outcomes does not show much, simply because there is awfully little data, essentially two to four Binomial-like outcomes. Without further data, the modelling is one of a simple graph of Binomial observations, with two or three probability parameters, which results in a very standard Bayesian analysis that does depend on the modelling choices being made, from a highly unrealistic assumption of homogeneity throughout the population(s) tested for the vaccine(s), to a lack of hyperparameters that could have been shared between vaccinated populations. Parts of the arXival are unrelated and unnecessary, like the highly detailed MCMC algorithm for simulating the posterior (incl. JAGS code) to the reminiscence of Bayes’ and Laplace’s early rendering of inverse probability. (I find both interesting and revealing that arXiv, just like medRxiv, posts a warning on top of COVID related preprints.)

use data that does not need statistics

Posted in Books, Kids, Statistics with tags , , , , on March 2, 2021 by xi'an

simplified Bayesian analysis

Posted in Statistics with tags , , , , , , , , , , , , on February 10, 2021 by xi'an

A colleague from Dauphine sent me a paper by Carlo Graziani on a Bayesian analysis of vaccine efficiency, asking for my opinion. The Bayesian side is quite simple: given two Poisson observations, N~P(μ) and M~P(ν), there exists a reparameterisation of (μ,ν) into

e=1-μ/rν  and  λ=ν(1+(1-e)r)=μ+ν

vaccine efficiency and expectation of N+M, respectively, when r is the vaccine-to-placebo ratio of person-times at risk, ie the ratio of the numbers of participants in each group. Reparameterisation such that the likelihood factorises into a function of e and a function of λ. Using a product prior for this parameterisation leads to a posterior on e times a posterior on λ. This is a nice remark, which may have been made earlier (as for instance another approach to infer about e while treating λ as a nuisance parameter is to condition on N+M). The paper then proposes as an application of this remark an analysis of the results of three SARS-Cov-2 vaccines, meaning using the pairs (N,M) for each vaccine and deriving credible intervals, which sounds more like an exercise in basic Bayesian inference than a fundamental step in assessing the efficiency of the vaccines…

Advances in scalable Bayesian computation [day #4]

Posted in Books, Mountains, pictures, R, Statistics, University life with tags , , , , , , , , , , , , , , , , , on March 7, 2014 by xi'an

polyptych painting within the TransCanada Pipeline Pavilion, Banff Centre, Banff, March 21, 2012Final day of our workshop Advances in Scalable Bayesian Computation already, since tomorrow morning is an open research time ½ day! Another “perfect day in paradise”, with the Banff Centre campus covered by a fine snow blanket, still falling…, and making work in an office of BIRS a dream-like moment.

Still looking for a daily theme, parallelisation could be the right candidate, even though other talks this week went into parallelisation issues, incl. Steve’s talk yesterday. Indeed, Anthony Lee gave a talk this morning on interactive sequential Monte Carlo, where he motivated the setting by a formal parallel structure. Then, Darren Wilkinson surveyed the parallelisation issues in Monte Carlo, MCMC, SMC and ABC settings, before arguing in favour of a functional language called Scala. (Neat entries to those topics can be found on Darren’s blog.) And in the afternoon session, Sylvia Frühwirth-Schnatter exposed her approach to the (embarrassingly) parallel problem, in the spirit of Steve’s , David Dunson’s and Scott’s (a paper posted on the day I arrived in Chamonix and hence I missed!). There was plenty to learn from that talk (do not miss the Yin-Yang moment at 25 mn!), but it also helped me to break a difficulty I had with the consensus Bayes representation for two weeks (more on that later!). And, even though Marc Suchard mostly talked about flu and trees in a very pleasant and broad talk, he also had a slide on parallelisation to fit the theme! Although unrelated with parallelism,  Nicolas Chopin’s talk was on sequential quasi-Monte Carlo algorithms: while I had heard previous versions of this talk in Chamonix and BigMC, I found it full of exciting stuff. And it clearly got the room truly puzzled by this possibility, in a positive way! Similarly, Alex Lenkoski spoke about extreme rain events in Norway with no trace of parallelism, but the general idea behind the examples was to question the notion of the calibrated Bayesian (with possible connections with the cut models).

This has been a wonderful week and I am sure the participants got as much as I did from the talks and the informal exchanges. Thanks to BIRS for the sponsorship and the superb organisation of the week (and to the Banff Centre for providing such a paradisical environment). I feel very privileged to have benefited from this support, even though I deadly hope to be back in Banff within a few years.