Archive for variational Bayes methods

19 dubious ways to compute the marginal likelihood

Posted in Books, Statistics with tags , , , , , , , , , , on December 11, 2018 by xi'an

A recent arXival on nineteen different [and not necessarily dubious!] ways to approximate the marginal likelihood of a given topology of a philogeny tree that reminded me of our San Antonio survey with Jean-Michel Marin. This includes a version of the Laplace approximation called Laplus (!), accounting for the fact that branch lengths on the tree are positive but may have a MAP at zero. Using a Beta, Gamma, or log-Normal distribution instead of a Normal. For importance sampling, the proposals are derived from either the Laplus (!) approximate distributions or from the variational Bayes solution (based on an Normal product). Harmonic means are still used here despite the obvious danger, along with a defensive version that mixes prior and posterior. Naïve Monte Carlo means simulating from the prior, while bridge sampling seems to use samples from prior and posterior distributions. Path and modified path sampling versions are those proposed in 2008 by Nial Friel and Tony Pettitt (QUT). Stepping stone sampling appears like another version of path sampling, also based on a telescopic product of ratios of normalising constants, the generalised version relying on a normalising reference distribution that need be calibrated. CPO and PPD in the above table are two versions based on posterior predictive density estimates.

When running the comparison between so many contenders, the ground truth is selected as the values returned by MrBayes in a massive MCMC experiment amounting to 7.5 billions generations. For five different datasets. The above picture describes mean square errors for the probabilities of split, over ten replicates [when meaningful], the worst case being naïve Monte Carlo, with nested sampling and harmonic mean solutions close by. Similar assessments proceed from a comparison of Kullback-Leibler divergences. With the (predicatble?) note that “the methods do a better job approximating the marginal likelihood of more probable trees than less probable trees”. And massive variability for the poorest methods:

The comparison above does not account for time and since some methods are deterministic (and fast) there is little to do about this. The stepping steps solutions are very costly, while on the middle range bridge sampling outdoes path sampling. The assessment of nested sampling found in the conclusion is that it “would appear to be an unwise choice for estimating the marginal likelihoods of topologies, as it produces poor approximate posteriors” (p.12). Concluding at the Gamma Laplus approximation being the winner across all categories! (There is no ABC solution studied in this paper as the model likelihood can be computed in this setup, contrary to our own setting.)

graphe, graphons, graphez !

Posted in Books, pictures, Statistics, University life with tags , , , , , , on December 3, 2018 by xi'an

Bayes for good

Posted in Books, Mountains, pictures, Running, Statistics, Travel, University life with tags , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , on November 27, 2018 by xi'an

A very special weekend workshop on Bayesian techniques used for social good in many different sense (and talks) that we organised with Kerrie Mengersen and Pierre Pudlo at CiRM, Luminy, Marseilles. It started with Rebecca (Beka) Steorts (Duke) explaining [by video from Duke] how the Syrian war deaths were processed to eliminate duplicates, to be continued on Monday at the “Big” conference, Alex Volfonsky (Duke) on a Twitter experiment on the impact of being exposed to adverse opinions as depolarising (not!) or further polarising (yes), turning into network causal analysis. And then Kerrie Mengersen (QUT) on the use of Bayesian networks in ecology, through observational studies she conducted. And the role of neutral statisticians in case of adversarial experts!

Next day, the first talk of David Corlis (Peace-Work), who writes the Stats for Good column in CHANCE and here gave a recruiting spiel for volunteering in good initiatives. Quoting Florence Nightingale as the “first” volunteer. And presenting a broad collection of projects as supports to his recommendations for “doing good”. We then heard [by video] Julien Cornebise from Element AI in London telling of his move out of DeepMind towards investing in social impacting projects through this new startup. Including working with Amnesty International on Darfour village destructions, building evidence from satellite imaging. And crowdsourcing. With an incoming report on the year activities (still under embargo). A most exciting and enthusiastic talk!

Continue reading

JSM 2018 [#3]

Posted in Mountains, Statistics, Travel, University life with tags , , , , , , , , , , , , , , on August 1, 2018 by xi'an

As I skipped day #2 for climbing, here I am on day #3, attending JSM 2018, with a [fully Canadian!] session on (conditional) copula (where Bruno Rémillard talked of copulas for mixed data, with unknown atoms, which sounded like an impossible target!), and another on four highlights from Bayesian Analysis, (the journal), with Maria Terres defending the (often ill-considered!) spectral approach within Bayesian analysis, modelling spectral densities (Fourier transforms of correlations functions, not probability densities), an advantage compared with MCAR modelling being the automated derivation of dependence graphs. While the spectral ghost did not completely dissipate for me, the use of DIC that she mentioned at the very end seems to call for investigation as I do not know of well-studied cases of complex dependent data with clearly specified DICs. Then Chris Drobandi was speaking of ABC being used for prior choice, an idea I vaguely remember seeing quite a while ago as a referee (or another paper!), paper in BA that I missed (and obviously did not referee). Using the same reference table works (for simple ABC) with different datasets but also different priors. I did not get first the notion that the reference table also produces an evaluation of the marginal distribution but indeed the entire simulation from prior x generative model gives a Monte Carlo representation of the marginal, hence the evidence at the observed data. Borrowing from Evans’ fringe Bayesian approach to model choice by prior predictive check for prior-model conflict. I remain sceptic or at least agnostic on the notion of using data to compare priors. And here on using ABC in tractable settings.

The afternoon session was [a mostly Australian] Advanced Bayesian computational methods,  with Robert Kohn on variational Bayes, with an interesting comparison of (exact) MCMC and (approximative) variational Bayes results for some species intensity and the remark that forecasting may be much more tolerant to the approximation than estimation. Making me wonder at a possibility of assessing VB on the marginals manageable by MCMC. Unless I miss a complexity such that the decomposition is impossible. And Antonietta Mira on estimating time-evolving networks estimated by ABC (which Anto first showed me in Orly airport, waiting for her plane!). With a possibility of a zero distance. Next talk by Nadja Klein on impicit copulas, linked with shrinkage properties I was unaware of, including the case of spike & slab copulas. Michael Smith also spoke of copulas with discrete margins, mentioning a version with continuous latent variables (as I thought could be done during the first session of the day), then moving to variational Bayes which sounds quite popular at JSM 2018. And David Gunawan made a presentation of a paper mixing pseudo-marginal Metropolis with particle Gibbs sampling, written with Chris Carter and Robert Kohn, making me wonder at their feature of using the white noise as an auxiliary variable in the estimation of the likelihood, which is quite clever but seems to get against the validation of the pseudo-marginal principle. (Warning: I have been known to be wrong!)

clustering dynamical networks

Posted in pictures, Statistics, University life with tags , , , , , , , , , , on June 5, 2018 by xi'an

Yesterday I attended a presentation by Catherine Matias on dynamic graph structures, as she was giving a plenary talk at the 50th French statistical meeting, conveniently located a few blocks away from my office at ENSAE-CREST. In the nicely futuristic buildings of the EDF campus, which are supposed to represent cogs according to the architect, but which remind me more of these gas holders so common in the UK, at least in the past! (The E of EDF stands for electricity, but the original public company handled both gas and electricity.) This was primarily a survey of the field, which is much more diverse and multifaceted than I realised, even though I saw some recent developments by Antonietta Mira and her co-authors, as well as refereed a thesis on temporal networks at Ca’Foscari by Matteo Iacopini, which defence I will attend in early July. The difficulty in the approaches covered by Catherine stands with the amount and complexity of the latent variables induced by the models superimposed on the data. In her paper with Christophe Ambroise, she followed a variational EM approach. From the spectator perspective that is mine, I wondered at using ABC instead, which is presumably costly when the data size grows in space or in time. And at using tensor structures as in Mateo’s thesis. This reminded me as well of Luke Bornn’s modelling of basketball games following each player in real time throughout the game. (Which does not prevent the existence of latent variables.) But more vaguely and speculatively I also wonder at the meaning of the chosen models, which try to represent “everything” in the observed process, which seems doomed from the start given the heterogeneity of the data. While reaching my Keynesian pessimistic low- point, which happens rather quickly!, one could hope for projection techniques, towards reducing the dimension of the data of interest and of the parameter required by the model.

Bayesian synthetic likelihood [a reply from the authors]

Posted in Books, pictures, Statistics, University life with tags , , , on December 26, 2017 by xi'an

[Following my comments on the Bayesian synthetic likelihood paper in JGCS, the authors sent me the following reply by Leah South (previously Leah Price).]

Thanks Christian for your comments!

ucgsThe pseudo-marginal idea is useful here because it tells us that in the ideal case in which the model statistic is normal and if we use the unbiased density estimator of the normal then we have an MCMC algorithm that converges to the same target regardless of the value of n (number of model simulations per MCMC iteration). It is true that the bias reappears in the case of misspecification. We found that the target based on the simple plug-in Gaussian density was also remarkably insensitive to n. Given this insensitivity, we consider calling again on the pseudo-marginal literature to offer guidance in choosing n to minimise computational effort and we recommend the use of the plug-in Gaussian density in BSL because it is simpler to implement.

“I am also lost to the argument that the synthetic version is more efficient than ABC, in general”

Given the parametric approximation to the summary statistic likelihood, we expect BSL to be computationally more efficient than ABC. We show this is the case theoretically in a toy example in the paper and find empirically on a number of examples that BSL is more computationally efficient, but we agree that further analysis would be of interest.

The concept of using random forests to handle additional summary statistics is interesting and useful. BSL was able to utilise all the information in the high dimensional summary statistics that we considered rather than resorting to dimension reduction (implying a loss of information), and we believe that is a benefit of BSL over standard ABC. Further, in high-dimensional parameter applications the summary statistic dimension will necessarily be large even if there is one statistic per parameter. BSL can be very useful in such problems. In fact we have done some work on exactly this, combining variational Bayes with synthetic likelihood.

Another benefit of BSL is that it is easier to tune (there are fewer tuning parameters and the BSL target is highly insensitive to n). Surprisingly, BSL performs reasonably well when the summary statistics are not normally distributed — as long as they aren’t highly irregular!

the invasion of the stochastic gradients

Posted in Statistics with tags , , , , , , , , , on May 10, 2017 by xi'an

Within the same day, I spotted three submissions to arXiv involving stochastic gradient descent, that I briefly browsed on my trip back from Wales:

  1. Stochastic Gradient Descent as Approximate Bayesian inference, by Mandt, Hoffman, and Blei, where this technique is used as a type of variational Bayes method, where the minimum Kullback-Leibler distance to the true posterior can be achieved. Rephrasing the [scalable] MCMC algorithm of Welling and Teh (2011) as such an approximation.
  2. Further and stronger analogy between sampling and optimization: Langevin Monte Carlo and gradient descent, by Arnak Dalalyan, which establishes a convergence of the uncorrected Langevin algorithm to the right target distribution in the sense of the Wasserstein distance. (Uncorrected in the sense that there is no Metropolis step, meaning this is a Euler approximation.) With an extension to the noisy version, when the gradient is approximated eg by subsampling. The connection with stochastic gradient descent is thus tenuous, but Arnak explains the somewhat disappointing rate of convergence as being in agreement with optimisation rates.
  3. Stein variational adaptive importance sampling, by Jun Han and Qiang Liu, which relates to our population Monte Carlo algorithm, but as a non-parametric version, using RKHS to represent the transforms of the particles at each iteration. The sampling method follows two threads of particles, one that is used to estimate the transform by a stochastic gradient update, and another one that is used for estimation purposes as in a regular population Monte Carlo approach. Deconstructing into those threads allows for conditional independence that makes convergence easier to establish. (A problem we also hit when working on the AMIS algorithm.)