Archive for Wasserstein distance

assessing MCMC convergence

Posted in Books, Statistics, University life with tags , , , , , , , , , , , on June 6, 2019 by xi'an

When MCMC became mainstream in the 1990’s, there was a flurry of proposals to check, assess, and even guarantee convergence to the stationary distribution, as discussed in our MCMC book. Along with Chantal Guihenneuc and Kerrie Mengersen, we also maintained for a while a reviewww webpage categorising theses. Niloy Biswas and Pierre Jacob have recently posted a paper where they propose the use of couplings (and unbiased MCMC) towards deriving bounds on different metrics between the target and the current distribution of the Markov chain. Two chains are created from a given kernel and coupled with a lag of L, meaning that after a while, the two chains become one with a time difference of L. (The supplementary material contains many details on how to induce coupling.) The distance to the target can then be bounded by a sum of distances between the two chains until they merge. The above picture from the paper is a comparison a Polya-Urn sampler with several HMC samplers for a logistic target (not involving the Pima Indian dataset!). The larger the lag L the more accurate the bound. But the larger the lag the more expensive the assessment of how many steps are needed to convergence. Especially when considering that the evaluation requires restarting the chains from scratch and rerunning until they couple again, rather than continuing one run which can only brings the chain closer to stationarity and to being distributed from the target. I thus wonder at the possibility of some Rao-Blackwellisation of the simulations used in this assessment (while realising once more than assessing convergence almost inevitably requires another order of magnitude than convergence itself!). Without a clear idea of how to do it… For instance, keeping the values of the chain(s) at the time of coupling is not directly helpful to create a sample from the target since they are not distributed from that target.

[Pierre also wrote an blog post about the paper on Statisfaction that is definitely much clearer and pedagogical than the above.]

selecting summary statistics [a tale of two distances]

Posted in Books, Statistics with tags , , , , , , , , , , , , , , on May 23, 2019 by xi'an

As Jonathan Harrison came to give a seminar in Warwick [which I could not attend], it made me aware of his paper with Ruth Baker on the selection of summaries in ABC. The setting is an ABC-SMC algorithm and it relates with Fearnhead and Prangle (2012), Barnes et al. (2012), our own random forest approach, the neural network version of Papamakarios and Murray (2016), and others. The notion here is to seek the optimal weights of different summary statistics in the tolerance distance, towards a maximization of a distance (Hellinger) between prior and ABC posterior (Wasserstein also comes to mind!). A sort of dual of the least informative prior. Estimated by a k-nearest neighbour version [based on samples from the prior and from the ABC posterior] I had never seen before. I first did not get how this k-nearest neighbour distance could be optimised in the weights since the posterior sample was already generated and (SMC) weighted, but the ABC sample can be modified by changing the [tolerance] distance weights and the resulting Hellinger distance optimised this way. (There are two distances involved, in case the above description is too murky!)

“We successfully obtain an informative unbiased posterior.”

The paper spends a significant while in demonstrating that the k-nearest neighbour estimator converges and much less on the optimisation procedure itself, which seems like a real challenge to me when facing a large number of particles and a high enough dimension (in the number of statistics). (In the examples, the size of the summary is 1 (where does the weight matter?), 32, 96, 64, with 5 10⁴, 5 10⁴, 5 10³ and…10 particles, respectively.) The authors address the issue, though, albeit briefly, by mentioning that, for the same overall computation time, the adaptive weight ABC is indeed further from the prior than a regular ABC with uniform weights [rather than weighted by the precisions]. They also argue that down-weighting some components is akin to selecting a subset of summaries, but I beg to disagree with this statement as the weights are never exactly zero, as far as I can see, hence failing to fight the curse of dimensionality. Some LASSO version could implement this feature.

Siem Reap conference

Posted in Kids, pictures, Travel, University life with tags , , , , , , , , , , , , , , , , , , on March 8, 2019 by xi'an

As I returned from the conference in Siem Reap. on a flight avoiding India and Pakistan and their [brittle and bristling!] boundary on the way back, instead flying far far north, near Arkhangelsk (but with nothing to show for it, as the flight back was fully in the dark), I reflected how enjoyable this conference had been, within a highly friendly atmosphere, meeting again with many old friends (some met prior to the creation of CREST) and new ones, a pleasure not hindered by the fabulous location near Angkor of course. (The above picture is the “last hour” group picture, missing a major part of the participants, already gone!)

Among the many talks, Stéphane Shao gave a great presentation on a paper [to appear in JASA] jointly written with Pierre Jacob, Jie Ding, and Vahid Tarokh on the Hyvärinen score and its use for Bayesian model choice, with a highly intuitive representation of this divergence function (which I first met in Padua when Phil Dawid gave a talk on this approach to Bayesian model comparison). Which is based on the use of a divergence function based on the squared error difference between the gradients of the true log-score and of the model log-score functions. Providing an alternative to the Bayes factor that can be shown to be consistent, even for some non-iid data, with some gains in the experiments represented by the above graph.

Arnak Dalalyan (CREST) presented a paper written with Lionel Riou-Durand on the convergence of non-Metropolised Langevin Monte Carlo methods, with a new discretization which leads to a substantial improvement of the upper bound on the sampling error rate measured in Wasserstein distance. Moving from p/ε to √p/√ε in the requested number of steps when p is the dimension and ε the target precision, for smooth and strongly log-concave targets.

This post gives me the opportunity to advertise for the NGO Sala Baï hostelry school, which the whole conference visited for lunch and which trains youths from underprivileged backgrounds towards jobs in hostelery, supported by donations, companies (like Krama Krama), or visiting the Sala Baï  restaurant and/or hotel while in Siem Reap.


Markov Chains [not a book review]

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , , , , , , on January 14, 2019 by xi'an

As Randal Douc and Éric Moulines are both very close friends and two authors of this book on Markov chains,  I cannot engage into a regular book review! Judging from the table of contents, the coverage is not too dissimilar to the now classic Markov chain Stochastic Stability book by Sean Meyn and the late Richard Tweedie (1994), called the Bible of Markov chains by Peter Glynn, with more emphasis on convergence matters and a more mathematical perspective. The 757 pages book also includes a massive appendix on maths and probability background. As indicated in the preface, “the reason [the authors] thought it would be useful to write a new book is to survey some of the developments made during the 25 years that have elapsed since the publication of Meyn and Tweedie (1993b).” Connecting with the theoretical developments brought by MCMC methods. Like subgeometric rates of convergence to stationarity, sample paths, limit theorems, and concentration inequalities. The book also reflects on the numerous contributions of the authors to the field. Hence a perfect candidate for teaching Markov chains to mathematically well-prepared. graduate audiences. Congrats to the authors!

a good start in Series B!

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , on January 5, 2019 by xi'an

Just received the great news for the turn of the year that our paper on ABC using Wasserstein distance was accepted in Series B! Inference in generative models using the Wasserstein distance, written by Espen Bernton, Pierre Jacob, Mathieu Gerber, and myself, bypasses the (nasty) selection of summary statistics in ABC by considering the Wasserstein distance between observed and simulated samples. It focuses in particular on non-iid cases like time series in what I find fairly innovative ways. I am thus very glad the paper is going to appear in JRSS B, as it has methodological consequences that should appeal to the community at large.

Implicit maximum likelihood estimates

Posted in Statistics with tags , , , , , , , , , , on October 9, 2018 by xi'an

An ‘Og’s reader pointed me to this paper by Li and Malik, which made it to arXiv after not making it to NIPS. While the NIPS reviews were not particularly informative and strongly discordant, the authors point out in the comments that they are available for the sake of promoting discussion. (As made clear in earlier posts, I am quite supportive of this attitude! Disclaimer: I was not involved in an evaluation of this paper, neither for NIPS nor for another conference or journal!!) Although the paper does not seem to mention ABC in the setting of implicit likelihoods and generative models, there is a reference to the early (1984) paper by Peter Diggle and Richard Gratton that is often seen as the ancestor of ABC methods. The authors point out numerous issues with solutions proposed for parameter estimation in such implicit models. For instance, for GANs, they signal that “minimizing the Jensen-Shannon divergence or the Wasserstein distance between the empirical data distribution and the model distribution does not necessarily minimize the same between the true data distribution and the model distribution.” (Not mentioning the particular difficulty with Bayesian GANs.) Their own solution is the implicit maximum likelihood estimator, which picks the value of the parameter θ bringing a simulated sample the closest to the observed sample. Closest in the sense of the Euclidean distance between both samples. Or between the minimum of several simulated samples and the observed sample. (The modelling seems to imply the availability of n>1 observed samples.) They advocate using a stochastic gradient descent approach for finding the optimal parameter θ which presupposes that the dependence between θ and the simulated samples is somewhat differentiable. (And this does not account for using a min, which would make differentiation close to impossible.) The paper then meanders in a lengthy discussion as to whether maximising the likelihood makes sense, with a rather naïve view on why using the empirical distribution in a Kullback-Leibler divergence does not make sense! What does not make sense is considering the finite sample approximation to the Kullback-Leibler divergence with the true distribution in my opinion.

sliced Wasserstein estimation of mixtures

Posted in Books, pictures, R, Statistics with tags , , , , , , on November 28, 2017 by xi'an

A paper by Soheil Kolouri and co-authors was arXived last week about using Wasserstein distance for inference on multivariate Gaussian mixtures. The basic concept is that the parameter is estimated by minimising the p-Wasserstein distance to the empirical distribution, smoothed by a Normal kernel. As the general Wasserstein distance is quite costly to compute, the approach relies on a sliced version, which means computing the Wasserstein distance between one-dimensional projections of the distributions. Optimising over the directions is an additional computational constraint.

“To fit a finite GMM to the observed data, one is required to answer the following questions: 1) how to estimate the number of mixture components needed to represent the data, and 2) how to estimate the parameters of the mixture components.”

The paper contains a most puzzling comment opposing maximum likelihood estimation to minimum Wasserstein distance estimation on the basis that the later would not suffer from multimodality. This sounds incorrect as the multimodality of a mixture model (likelihood) stems from the lack of identifiability of the parameters. If all permutations of these parameters induce exactly the same distribution, they all stand at the same distance from the data distribution, whatever the distance is. Furthermore, the above tartan-like picture clashes with the representation of the log-likelihood of a Normal mixture, as exemplified by the picture below based on a 150 sample with means 0 and 2, same unit variance, and weights 0.3 and 0.7, which shows a smooth if bimodal structure:And for the same dataset, my attempt at producing a Wasserstein “energy landscape” does return a multimodal structure (this is the surface of minus the logarithm of the 2-Wasserstein distance):“Jin et al. proved that with random initialization, the EM algorithm will converge to a bad critical point with high probability.”

This statement is most curious in that the “probability” in the assessment must depend on the choice of the random initialisation, hence on a sort of prior distribution that is not explicited in the paper. Which remains blissfully unaware of Bayesian approaches.

Another [minor mode] puzzling statement is that the p-Wasserstein distance is defined on the space of probability measures with finite p-th moment, which does not make much sense when what matters is rather the finiteness of the expectation of the distance d(X,Y) raised to the power p. A lot of the maths details either do not make sense or seem superfluous.