Archive for William Feller

the anti-Bayesian moment and its passing online

Posted in Statistics, University life with tags , , on March 8, 2013 by xi'an

Our rejoinder “the anti-Bayesian moment and its passing” with Andrew Gelman has now been put online on the webpage of The American Statistician. While this rejoinder is freely available, the paper that generated the discussion and this rejoinder, ““Not Only Defended But Also Applied”: The Perceived Absurdity of Bayesian Inference” is only available to subscribers to The American Statistician. Or through arXiv.

the anti-Bayesian moment and its passing

Posted in Books, Statistics, University life with tags , , , , , , , , on October 30, 2012 by xi'an

Today, our reply to the discussion of our American Statistician paper “Not only defended but also applied” by Stephen Fienberg, Wes Johnson, Deborah Mayo, and Stephen Stiegler,, was posted on arXiv. It is kind of funny that this happens the day I am visiting Iowa State University Statistics Department, a department that was formerly a Fisherian and thus anti-Bayesian stronghold. (Not any longer, to be sure! I was also surprised to discover that before the creation of the department, Henry Wallace, came to lecture on machine calculations for statistical methods…in 1924!)

The reply to the discussion was rewritten and much broadened by Andrew after I drafted a more classical point-by-point reply to our four discussants, much to its improvement. For one thing, it reads well on its own, as the discussions are not yet available on-line. For another, it gives a broader impact of the discussion, which suits well the readership of The American Statistician. (Some of my draft reply is recycled in this post.)

Continue reading

not only defended but also applied [to appear]

Posted in Books, Statistics, University life with tags , , , , , , , on June 12, 2012 by xi'an

Our paper with Andrew Gelman, “Not only defended but also applied”: the perceived absurdity of Bayesian inference, has been reviewed for the second time and is to appear in The American Statistician, as a discussion paper. Terrific news! This is my first discussion paper in The American Statistician (and the second in total, the first one being the re-read of JeffreysTheory of Probability.) [The updated version is now on arXiv.]

not only defended but also applied (rev’d)

Posted in Statistics with tags , , , on April 16, 2012 by xi'an

Following a very positive and encouraging review by The American Statistician of our paper with Andrew Gelman on Feller’s misrepresentation of Bayesian statistics in the otherwise superb Introduction to Probability Theory , we have submited a revised version, now posted on arXiv. Hopefully, we will be able to publish this historic-philosophical note in The American Statistician, and maybe even get a discussion paper on the issue of misconceptions on Bayesian analysis.

the birthday problem [X’idated]

Posted in R, Statistics, University life with tags , , , on February 1, 2012 by xi'an

The birthday problem (i.e. looking at the distribution of the birthdates in a group of n persons, assuming [wrongly] a uniform distribution of the calendar dates of those birthdates) is always a source of puzzlement [for me]! For instance, here is a recent post on Cross Validated:

I have 360 friends on facebook, and, as expected, the distribution of their birthdays is not uniform at all. I have one day with that has 9 friends with the same birthday. So, given that some days are more likely for a birthday, I’m assuming the number of 23 is an upperbound.

The figure 9 sounded unlikely, so I ran the following computation:

extreme=rep(0,360)
for (t in 1:10^5){
  i=max(diff((1:360)[!duplicated(sort(sample(1:365,360,rep=TRUE)))]))
  extreme[i]=extreme[i]+1
  }
extreme=extreme/10^5
barplot(extreme,xlim=c(0,30),names=1:360)

whose output shown on the above graph. (Actually, I must confess I first forgot the sort in the code, which led me to then believe that 9 was one of the most likely values and post it on Cross Validated! The error was eventually picked by one administrator. I should know better than trust my own R code!) According to this simulation, observing 9 or more people having the same birthdate has an approximate probability of 0.00032… Indeed, fairly unlikely!

Incidentally, this question led me to uncover how to print the above on this webpage. And to learn from the X’idated moderator whuber the use of tabulate. Which avoids the above loop:

> system.time(test(10^5)) #my code above
user  system elapsed
26.230   0.028  26.411
> system.time(table(replicate(10^5, max(tabulate(sample(1:365,360,rep=TRUE))))))
user  system elapsed
5.708   0.044   5.762