Archive for ziggurat algorithm

piling up ziggurats

Posted in Books, pictures, Statistics, Travel with tags , , , , , , on June 7, 2021 by xi'an

This semester. a group of Dauphine graduate students worked under my direction on simulation problems and resorted to using the Ziggurat method developed by George Marsaglia and Wai Wan Tsang, at about the time Devroye was completing his simulation bible. The algorithm covers the half-Normal density by 2², 2⁴, 2⁸, &tc., stripes, all but one rectangles and all with the same surface v. Generating uniformly from the tail strip means generating either uniformly from the rectangle part, x<r, or exactly from the Normal tail x>r, using a drifted exponential accept-reject. The choice between both does not require the surface of the rectangle but a single simulation y=vU/f(r). Furthermore, for the other rectangles, checking first that the first coordinate of the simulated point is less than the left boundary of the rectangle above avoids computing the density. This method is incredibly powerful, once the boundaries have been determined. With 2³² stripes, its efficiency is 99.3% acceptance rate. Compared with a fast algorithm by Ahrens & Dieter (1989), it is three times faster…

ziggurat algorithm

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , , , , on October 30, 2018 by xi'an

A ziggurat (Akkadian: ziqqurat, D-stem of zaqāru “to build on a raised area”) is a type of massive stone structure built in ancient Mesopotamia. It has the form of a terraced compound of successively receding stories or levels. Wikipedia

In a recent arXival, Jalalvand and Charsooghi revisit the ziggurat algorithm that simulates from a univariate distribution by finding horizontal strips that pile up on top of the target as in a ziggurat or a pyramid, hence the name. Which George Marsaglia introduced in 1963. When finely tuned the method is quite efficient. Maybe because it designs an accept-reject move for each strip of the ziggurat rather than globally. For instance, versions constructed for a Normal target are more efficient [3½ times faster] than the Box-Muller algorithm. The generalisation found in the paper divides the target into strips of equal area, rather than dominating rectangular strips of equal area, which requires some work when the target density is non-standard. For targets with unbounded support or unbounded values, a function g transforming the tail into (0,1) has to be selected. A further constraint is that the inverse cdf of the transformed g(X) has to be known. And a large part of the paper examines several scenarii towards simulating from the tail region. For unbounded densities, a similarly minute analysis is undertaken, again with requests about the target like its algebraic order.

“…the result of division of a random integer by its range is a fixed-point number which unlike a floating-point number does not enjoy increased precision near 0. When such random numbers are used in the tail algorithm they cause premature termination of the tail and large gaps between produced random numbers near the termination point.”

The paper further discusses the correction of an error common to earlier ziggurat algorithms, due to the  conversion from fixed-point to floating-point numbers, as indicated in the above quote. Although this had already been addressed by George Marsaglia in the early 1990’s.

“Ziggurat algorithm has a high setup time, so it’s not suitable for applications that require variates with frequently changing shape parameters.”

When testing the algorithm against different methods (in STL and Boost), and different distributions, the gains are between two and seven times faster, except for the Exponential target where the original ziggurat algorithm performs better. Interestingly, the gains (and the computing time) increase with the degrees of freedom for the Gamma target, in relation with Devroye’s (1986) remark on the absence of uniformly bounded execution times for this distribution. Same thing for the Weibull variates, obviously. Reflecting upon the usually costly computation of cdfs and inverse cdfs on machines and software, the inverse cdf method is systematically left behind! In conclusion, a good Sunday morning read if not of direct consequences for MCMC implementation, as warned by the authors.


what does more efficient Monte Carlo mean?

Posted in Books, Kids, R, Statistics with tags , , , , , , on March 17, 2017 by xi'an

“I was just thinking that there might be a magic trick to simulate directly from this distribution without having to go for less efficient methods.”

In a simple question on X validated a few days ago [about simulating from x²φ(x)] popped up the remark that the person asking the question wanted a direct simulation method for higher efficiency. Compared with an accept-reject solution. Which shows a misunderstanding of what “efficiency” means on Monte Carlo situations. If it means anything, I would think it is reflected in the average time taken to return one simulation and possibly in the worst case. But there is no reason to call an inverse cdf method more efficient than an accept reject or a transform approach since it all depends on the time it takes to make the inversion compared with the other solutions… Since inverting the closed-form cdf in this example is much more expensive than generating a Gamma(½,½), and taking plus or minus its root, this is certainly the case here. Maybe a ziggurat method could be devised, especially since x²φ(x)<φ(x) when |x|≤1, but I am not sure it is worth the effort!