inverse stable priors
Dexter Cahoy and Joseph Sedransk just arXived a paper on so-called inverse stable priors. The starting point is the supposed defficiency of Gamma conjugate priors, which have explosive behaviour near zero. Albeit remaining proper. (This behaviour eventually vanishes for a large enough sample size.) The alternative involves a transform of alpha-stable random variables, with the consequence that the density of this alternative prior does not have a closed form. Neither does the posterior. When the likelihood can be written as exp(a.θ+b.log θ), modulo a reparameterisation, which covers a wide range of distributions, the posterior can be written in terms of the inverse stable density and of another (intractable) function called the generalized Mittag-Leffler function. (Which connects this post to an earlier post on Sofia Kovaleskaya.) For simulating this posterior, the authors suggest using an accept-reject algorithm based on the prior as proposal, which has the advantage of removing the intractable inverse stable density but the disadvantage of… simulating from the prior! (No mention is made of the acceptance rate.) I am thus reserved as to how appealing this new proposal is, despite “the inverse stable density (…) becoming increasingly popular in several areas of study”. And hence do not foresee a bright future for this class of prior…
November 24, 2017 at 5:35 am
A weird side effect of my misspent youth as a numerical analyst is that I can say generalised Mittag-Leffler functions aren’t particularly hard to compute. They hold the same role as the exponential function for fractional differential equations, so people have spent some time on it.