Le Monde puzzle [#820]

The current puzzle is… puzzling:

Given the set {1,…,N} with N<61, one iterates the following procedure: take (x,y) within the set and replace the pair with the smallest divider of x+y (bar 1). What are the values of N such that the final value in the set is 61?

I find it puzzling because the way the pairs are selected impacts the final value. Or not, depending upon N. Using the following code (with factors() from the pracma package):

library(pracma)
endof=function(N){
  coll=1:N
  for (t in 1:(N-1)){

    pair=sample(1:length(coll),2)
    dive=min(factors(sum(coll[pair])))
    coll=coll[-pair]
    coll=c(coll,dive)
    }
  print(dive)
  }

I got:

> for (t in 1:10) endof(10)
[1] 5
[1] 3
[1] 3
[1] 5
[1] 7
[1] 5
[1] 5
[1] 7
[1] 3
[1] 3> for (t in 1:10) endof(16)
[1] 2
[1] 2
[1] 2
[1] 2
[1] 2
[1] 2
[1] 2
[1] 2
[1] 2
[1] 2

For N of the form 4k or 4k-1, the final number is always 2 while for N‘s of the form 4k-2 and 4k-3, the final number varies, sometimes producing 61’s. Although I could not find solutions for N less than 17…  Looking more closely into the sequence leading to 61, I could not see a pattern, apart from producing prime numbers as, in, e.g.

61 = 2 + [12 +  (4 + {14 + [13 + 16]})]

for N=17.  (Another puzzle is that 61 plays no particular role: a long run of random calls to endof() return all prime numbers up to 79…)

Udate: Looking at the solution in today’s edition, there exist a solution for N=13 and a solution for N=14. Even though my R code fails to spot it. Of course, an exhaustive search would be feasible in these two cases.  (I had also eliminated values below as not summing up to 61.) The argument for eliminating 4k and 4k-1 is that there must be an odd number of odd numbers in the collection, otherwise, the final number is always 2.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 717 other followers