a Galton-Watson riddle

riddleThe Riddler of this week has an extinction riddle which summarises as follows:

One observes a population of N individuals, each with a probability of 10⁻⁴ to kill the observer each day. From one day to the next, the population decreases by one individual with probability

K√N 10⁻⁴

What is the value of K that leaves the observer alive with probability ½?

Given the sequence of population sizes N,N¹,N²,…, the probability to remain alive is


where the sum stops with the (sure) extinction of the population. Which is the moment generating function of the sum. At x=1-10⁻⁴. Hence the problem relates to a Galton-Watson extinction problem. However, given the nature of the extinction process I do not see a way to determine the distribution of the sum, except by simulation. Which returns K=27 for the specific value of N=9.

while (abs(targ-.5)>.01){

for (t in 1:M){
  while (gen>0){
  if (targ<.5){ K=K*ite/(1+ite)}else{

The solution proposed on The Riddler is more elegant in that the fixed point equation is

\prod_{J=1}^9 \frac{K \cdot \sqrt{J}}{K \cdot \sqrt{J} + J}=\frac{1}{2}

with a solution around K=27.

2 Responses to “a Galton-Watson riddle”

  1. […] leave a comment for the author, please follow the link and comment on their blog: R – Xi’an’s Og.R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data […]

  2. […] article was first published on R – Xi'an's Og, and kindly contributed to […]

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s