no country for odd means

This morning, Clara Grazian and I arXived a paper about Jeffreys priors for mixtures. This is a part of Clara’s PhD dissertation between Roma and Paris, on which she has worked for the past year. Jeffreys priors cannot be computed analytically for mixtures, which is such a drag that it led us to devise the delayed acceptance algorithm. However, the main message from this detailed study of Jeffreys priors is that they mostly do not work for Gaussian mixture models, in that the posterior is almost invariably improper! This is a definite death knell for Jeffreys priors in this setting, meaning that alternative reference priors, like the one we advocated with Kerrie Mengersen and Mike Titterington, or the similar solution in Roeder and Wasserman, have to be used. [Disclaimer: the title has little to do with the paper, except that posterior means are off for mixtures…]

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.