partial rankings and aggregate ranks

When interviewing impressive applicants from a stunning variety of places and background for fellows in our Data Science for Social Good program (in Warwick and Kaiserslautern) this summer, we came through the common conundrum of comparing ranks while each of us only meeting a subset of the candidates. Over a free morning, I briefly thought of the problem (while swimming) and then wrote a short R code to infer about an aggregate ranking, ρ, based on a simple model, namely a Poisson distribution on the distance between an individual’s ranking and the aggregate

d(r_i,\rho)\sim\mathcal P(\lambda)

a uniform distribution on the missing ranks as well as on the aggregate, and a non-informative prior on λ. Leading to a three step Gibbs sampler for the completion and the simulation of ρ and λ.

I am aware that the problem has been tackled in many different ways, including Bayesian ones (as in Deng et al., 2014) and local ones, but this was a fun exercise. Albeit we did not use any model in the end!

One Response to “partial rankings and aggregate ranks”

  1. […] article was first published on R – Xi’an’s Og, and kindly contributed to R-bloggers]. (You can report issue about the content on this page […]

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: