**I**n the plane to Warwick on Monday, I was reading my latest issue of Nature and found an interesting editorial on the financial plight of many graduates and post-docs in both the US and the UK (and certainly elsewhere). Who, despite having a fellowship, cannot make ends meet. This is particularly true in expensive cities like London, Oxford or even Paris, where rents force those new researchers to face long commuting hours. The editorial suggests taking extra-jobs to make up for financial difficulties, but this does not sound to me like a particularly pertinent recommendation if it means taking time off one’s research, at the period in a researcher’s career where one’s energy should be mostly directed at the production of papers towards securing a (more) permanent job. Even teaching can prove too time consuming for finishing PhD students. An adequation between the needs of those young researchers and the institutional support they receive would sound like a natural requirement, while graduates looking for fellowship should truly assess the adequation in detail before accepting an offer.Which of course is not always easy. In countries where post-doctoral contracts are not negotiable and are set at a national level (like, e.g., France), checking with earlier fellows is a must. (As it happens or happened, I was quite lucky to spend my post-doctoral years in cheap places with decent support from the local universities, but this is not relevant in today’s environment!)

## Archive for University of Warwick

## difficult times for postdocs

Posted in Kids, Travel, University life with tags fellowships, graduate course, Nature, postdocs, postdoctoral position, University of Warwick on July 16, 2016 by xi'an## Monte Carlo in the convent

Posted in pictures, Statistics, Travel, University life with tags coalescent, delayed acceptance, Dirichlet mixture priors, Institut Louis Bachelier, Monte Carlo, noisy Monte Carlo, Paris, pseudo-marginal MCMC, retrospective Monte Carlo, University of Warwick on July 14, 2016 by xi'an**L**ast week, at the same time as the workshop on retrospective Monte Carlo in Warwick, there was a Monte Carlo conference in Paris, closing a Monte Carlo cycle run by Institut Louis Bachelier from October 2015 till June 2016. It took place in the convent of Les Cordeliers, downtown Paris [hence the title] and I alas could not attend the talks. As I organised a session on Bayesian (approximate) computations, with Richard Everitt, Jere Koskela, and Chris Sherlock as speakers (and Robin Ryder as chair), here are the slides of the speakers (actually, Jere most kindly agreed to give Chris’ talk as Chris was to sick to travel to Paris):

## retrospective Monte Carlo

Posted in pictures, Running, Statistics, Travel, University life with tags cigarettes, CRiSM, debiasing, exact estimation, exact sampling, Monte Carlo Statistical Methods, multi-level Monte Carlo, perfect sampling, retrospective Monte Carlo, University of Warwick, Zig-Zag on July 12, 2016 by xi'an**T**he past week I spent in Warwick ended up with a workshop on retrospective Monte Carlo, which covered exact sampling, debiasing, Bernoulli factory problems and multi-level Monte Carlo, a definitely exciting package! (Not to mention opportunities to go climbing with some participants.) In particular, several talks focussed on the debiasing technique of Rhee and Glynn (2012) [inspired from von Neumann and Ulam, and already discussed in several posts here]. Including results in functional spaces, as demonstrated by a multifaceted talk by Sergios Agapiou who merged debiasing, deburning, and perfect sampling.

From a general perspective on unbiasing, while there exist sufficient conditions to ensure finite variance and aim at an optimal version, I feel a broader perspective should be adopted towards comparing those estimators with biased versions that take less time to compute. In a diffusion context, Chang-han Rhee presented a detailed argument as to why his debiasing solution achieves a O(√n) convergence rate in opposition the regular discretised diffusion, but multi-level Monte Carlo also achieves this convergence speed. We had a nice discussion about this point at the break, with my slow understanding that continuous time processes had much much stronger reasons for sticking to unbiasedness. At the poster session, I had the nice surprise of reading a poster on the penalty method I discussed the same morning! Used for subsampling when scaling MCMC.

On the second day, Gareth Roberts talked about the Zig-Zag algorithm (which reminded me of the cigarette paper brand). This method has connections with slice sampling but it is a continuous time method which, in dimension one, means running a constant velocity particle that starts at a uniform value between 0 and the maximum density value and proceeds horizontally until it hits the boundary, at which time it moves to another uniform. Roughly. More specifically, this approach uses piecewise deterministic Markov processes, with a radically new approach to simulating complex targets based on continuous time simulation. With computing times that [counter-intuitively] do not increase with the sample size.

Mark Huber gave another exciting talk around the Bernoulli factory problem, connecting with perfect simulation and demonstrating this is not solely a formal Monte Carlo problem! Some earlier posts here have discussed papers on that problem, but I was unaware of the results bounding [from below] the expected number of steps to simulate B(f(p)) from a (p,1-p) coin. If not of the open questions surrounding B(2p). The talk was also great in that it centred on recursion and included a fundamental theorem of perfect sampling! Not that surprising given Mark’s recent book on the topic, but exhilarating nonetheless!!!

The final talk of the second day was given by Peter Glynn, with connections with Chang-han Rhee’s talk the previous day, but with a different twist. In particular, Peter showed out to achieve perfect or exact estimation rather than perfect or exact simulation by a fabulous trick: perfect sampling is better understood through the construction of random functions φ¹, φ², … such that X²=φ¹(X¹), X³=φ²(X²), … Hence,

which helps in constructing coupling strategies. However, since the φ’s are usually iid, the above is generally distributed like

which seems pretty similar but offers a much better concentration as t grows. Cutting the function composition is then feasible towards producing unbiased estimators and more efficient. (I realise this is not a particularly clear explanation of the idea, detailed in an arXival I somewhat missed. When seen this way, Y would seem much more expensive to compute [than X].)

## control functionals for Monte Carlo integration

Posted in Books, Statistics, University life with tags control functionals, control variates, convergence rate, CREST, JRSSB, kernel, Monte Carlo error, Monte Carlo Statistical Methods, nested sampling, reproducing kernel Hilbert space, Riemann sums, RKHS, Series B, University of Warwick on June 28, 2016 by xi'an**A** paper on control variates by Chris Oates, Mark Girolami (Warwick) and Nicolas Chopin (CREST) appeared in a recent issue of Series B. I had read and discussed the paper with them previously and the following is a set of comments I wrote at some stage, to be taken with enough gains of salt since Chris, Mark and Nicolas answered them either orally or in the paper. Note also that I already discussed an earlier version, with comments that are not necessarily coherent with the following ones! *[Thanks to the busy softshop this week, I resorted to publish some older drafts, so mileage can vary in the coming days.]*

First, it took me quite a while to get over the paper, mostly because I have never worked with reproducible kernel Hilbert spaces (RKHS) before. I looked at some proofs in the appendix and at the whole paper but could not spot anything amiss. It is obviously a major step to uncover a manageable method with a rate that is lower than √n. When I set my PhD student Anne Philippe on the approach via Riemann sums, we were quickly hindered by the dimension issue and could not find a way out. In the first versions of the nested sampling approach, John Skilling had also thought he could get higher convergence rates before realising the Monte Carlo error had not disappeared and hence was keeping the rate at the same √n speed.

The core proof in the paper leading to the 7/12 convergence rate relies on a mathematical result of Sun and Wu (2009) that a certain rate of regularisation of the function of interest leads to an average variance of order 1/6. I have no reason to mistrust the result (and anyway did not check the original paper), but I am still puzzled by the fact that it almost immediately leads to the control variate estimator having a smaller order variance (or at least variability). On average or in probability. (I am also uncertain on the possibility to interpret the boxplot figures as establishing super-√n speed.)

Another thing I cannot truly grasp is how the control functional estimator of (7) can be both a mere linear recombination of individual unbiased estimators of the target expectation and an improvement in the variance rate. I acknowledge that the coefficients of the matrices are functions of the sample simulated from the target density but still…

Another source of inner puzzlement is the choice of the kernel in the paper, which seems too simple to be able to cover all problems despite being used in every illustration there. I see the kernel as centred at zero, which means a central location must be know, decreasing to zero away from this centre, so possibly missing aspects of the integrand that are too far away, and isotonic in the reference norm, which also seems to preclude some settings where the integrand is not that compatible with the geometry.

I am equally nonplussed by the existence of a deterministic bound on the error, although it is not completely deterministic, depending on the values of the reproducible kernel at the points of the sample. Does it imply anything restrictive on the function to be integrated?

A side remark about the use of intractable in the paper is that, given the development of a whole new branch of computational statistics handling likelihoods that cannot be computed at all, intractable should possibly be reserved for such higher complexity models.

## Batman at Warwick

Posted in Books, pictures, Statistics, University life with tags bats, Bayesian inference, missing species problem, University of Warwick, youtube on June 11, 2016 by xi'an**H**ere is a short video featuring Mark Girolami (Warwick) explaining how to use signal processing and Bayesian statistics to estimate how many bats there are in a dark cave: