## a simulated annealing approach to Bayesian inference

**A** misleading title if any! Carlos Albert arXived a paper with this title this morning and I rushed to read it. Because it sounded like Bayesian analysis could be expressed as a special form of simulated annealing. But it happens to be a rather technical sequel [“that complies with physics standards”] to another paper I had missed, A simulated annealing approach to ABC, by Carlos Albert, Hans Künsch, and Andreas Scheidegger. Paper that appeared in Statistics and Computing last year, and which is most interesting!

“These update steps are associated with a flow of entropy from the system (the ensemble of particles in the product space of parameters and outputs) tothe environment. Part of this flow is due to the decrease of entropy in the system when it transforms from the prior to the posterior state and constitutes the well-invested part of computation. Since the process happens in finite time, inevitably, additional entropy is produced. This entropy production is used as a measure of the wasted computation and minimized, as previously suggested for adaptive simulated annealing” (p.3)

The notion behind this simulated annealing intrusion into the ABC world is that the choice of the tolerance can be adapted along iterations according to a simulated annealing schedule. Both papers make use of thermodynamics notions that are completely foreign to me, like endoreversibility, but aim at minimising the “entropy production of the system, which is a measure for the waste of computation”. The central innovation is to introduce an augmented target on (θ,x) that is

f(x|θ)π(θ)exp{-ρ(x,y)/ε},

where ε is the tolerance, while ρ(x,y) is a measure of distance to the actual observations, and to treat ε as an annealing temperature. In an ABC-MCMC implementation, the acceptance probability of a random walk proposal (θ’,x’) is then

exp{ρ(x,y)/ε-ρ(x’,y)/ε}∧1.

Under some regularity constraints, the sequence of targets converges to

π(θ|y)exp{-ρ(x,y)},

if ε decreases slowly enough to zero. While the representation of ABC-MCMC through kernels other than the Heaviside function can be found in the earlier ABC literature, the embedding of tolerance updating within the modern theory of simulated annealing is rather exciting.

“

Furthermore, we will present an adaptive schedule that attempts convergence to the correct posterior while minimizing the required simulations from the likelihood. Both the jump distribution in parameter space and the tolerance are adapted using mean fields of the ensemble.” (p.2)

What I cannot infer from a rather quick perusal of the papers is whether or not the implementation gets into the way of the all-inclusive theory. For instance, how can the Markov chain keep moving as the tolerance gets to zero? Even with a particle population and a sequential Monte Carlo implementation, it is unclear why the proposal scale factor [as in equation (34)] does not collapse to zero in order to ensure a non-zero acceptance rate. In the published paper, the authors used the same toy mixture example as ours [from Sisson et al., 2007], where we earned the award of the “incredibly ugly squalid picture”, with improvements in the effective sample size, but this remains a toy example. *(Hopefully a post to be continued in more depth…)*

October 2, 2015 at 2:13 pm

This is very interesting because I have a colleague who obtained prediction confidence intervals using rejection sampling with the samples obtained from simulated annealing. The result is good and makes sense but the procedure is not theoretically validated. Hopefully I can read more in the post to continued.