**I**n the most recent Bayesian Analysis, Marko Järvenpää et al. (including my coauthor Aki Vehtari) consider an ABC setting where the number of available simulations of pseudo-samples is limited. And where they want to quantify the amount of uncertainty resulting from the estimation of the ABC posterior density. Which is a version of the Monte Carlo error in practical ABC, in that this is the difference between the ABC posterior density for a given choice of summaries and a given choice of tolerance, and the actual approximation based on a finite number of simulations from the prior predictive. As in earlier works by Michael Gutmann and co-authors, the focus stands in designing a sequential strategy to decide where to sample the next parameter value towards minimising a certain expected loss. And in adopting a Gaussian process modelling for the discrepancy between observed data and simulated data, hence generalising the synthetic likelihood approach. This allows them to compute the expectation and the variance of the unnormalised ABC posterior, based on plugged-in estimators. From where the authors derive a loss as the expected variance of the acceptance probability (although it is not parameterisation invariant). I am unsure I see the point for this choice in that there is no clear reason for the resulting sequence of parameter choices to explore the support of the posterior distribution in a relatively exhaustive manner. The paper also mentions alternatives where the next parameter is chosen at the location where “the uncertainty of the unnormalised ABC posterior is highest”. Which sounds more pertinent to me. And further avoids integrating out the parameter. I also wonder if ABC mis-specification analysis could apply in this framework since the Gaussian process is most certainly a “wrong” model. (When concluding this post, I realised I had written a similar entry two years ago about the earlier version of the paper!)

## Archive for Bayesian Analysis

## uncertainty in the ABC posterior

Posted in Statistics with tags ABC, Bayesian Analysis, Gaussian processes, misspecified model, Monte Carlo error, prior predictive, synthetic likelihood on July 24, 2019 by xi'an## the most probable cluster

Posted in Books, Statistics with tags Bayesian Analysis, clustering, Dirichlet process Gaussian mixture, MAP estimators, mixtures of distributions, NP-complete problem, penalised likelihood on July 11, 2019 by xi'anIn the last issue of Bayesian Analysis, Lukasz Rajkowski studies the most likely (MAP) cluster associated with the Dirichlet process mixture model. Reminding me that most Bayesian estimates of the number of clusters are not consistent (when the sample size grows to infinity). I am always puzzled by this problem, as estimating the number of clusters sounds like an ill-posed problem, since it is growing with the number of observations, by definition of the Dirichlet process. For instance, the current paper establishes that the number of clusters intersecting a given compact set remains bounded. (The setup is one of a Normal Dirichlet process mixture with constant and known covariance matrix.)

Since the posterior probability of a given partition of {1,2,…,n} can be (formally) computed, the MAP estimate can be (formally) derived. I inserted *formally* in the previous sentence as the derivation of the exact MAP is an NP hard problem in the number n of observations. As an aside, I have trouble with the author’s argument that the convex hulls of the clusters should be disjoin: I do not see why they should when the mixture components are overlapping. (More generally, I fail to relate to notions like “bad clusters” or “overestimation of the number of clusters” or a “sensible choice” of the covariance matrix.) More globally, I am somewhat perplexed by the purpose of the paper and the relevance of the MAP estimate, even putting aside my generic criticisms of the MAP approach. No uncertainty is attached to the estimator, which thus appears as a form of penalised likelihood strategy rather than a genuinely Bayesian (Analysis) solution.

The first example in the paper is using data from a Uniform over (-1,1), concluding at a “misleading” partition by the MAP since it produces more than one cluster. I find this statement flabbergasting as the generative model is not the estimated model. To wit, the case of an exponential Exp(1) sample that cannot reach a maximum of the target function with a finite number of sample. Which brings me back full-circle to my general unease about clustering in that much more seems to be assumed about this notion than what the statistical model delivers.

## Bayesian conjugate gradients [open for discussion]

Posted in Books, pictures, Statistics, University life with tags Bayesian Analysis, Bayesian methods for hackers, discussion paper, probabilistic numerics, probabilistic programming, University of Warwick on June 25, 2019 by xi'an**W**hen fishing for an illustration for this post on Google, I came upon this Bayesian methods for hackers cover, a book about which I have no clue whatsoever (!) but that mentions probabilistic programming. Which serves as a perfect (?!) introduction to the call for discussion in Bayesian Analysis of the incoming Bayesian conjugate gradient method by Jon Cockayne, Chris Oates (formerly Warwick), Ilse Ipsen and Mark Girolami (still partially Warwick!). Since indeed the paper is about probabilistic numerics à la Mark and co-authors. Surprisingly dealing with solving the deterministic equation Ax=b by Bayesian methods. The method produces a posterior distribution on the solution x⁰, given a fixed computing effort, which makes it pertain to the anytime algorithms. It also relates to an earlier 2015 paper by Christian Hennig where the posterior is on A⁻¹ rather than x⁰ (which is quite a surprising if valid approach to the problem!) The computing effort is translated here in computations of projections of random projections of Ax, which can be made compatible with conjugate gradient steps. Interestingly, the choice of the prior on x is quite important, including setting a low or high convergence rate… **Deadline is August 04!**

## from tramway to Panzer (or back!)…

Posted in Books, pictures, Statistics with tags Bayesian Analysis, German tank problem, Laplace succession rule, order statistics, The Bayesian Choice, tramway problem, tramways on June 14, 2019 by xi'an **A**lthough it is usually presented as *the tramway problem*, namely estimating the number of tram or bus lines in a city given observing one line number, including The Bayesian Choice by yours truly, the original version of the problem is about German tanks, Panzer V tanks to be precise, which total number *M* was to be estimated by the Allies from their observation of serial numbers of a number *k* of tanks. The Riddler is restating the problem when the only available information is made of the smallest, 22, and largest, 144, numbers, with no information about the number *k* itself. I am unsure what the Riddler means by “best” estimate, but a posterior distribution on *M* (and *k*) can be certainly be constructed for a prior like *1/k x 1/M²* on *(k,M)*. (Using M² to make sure the posterior mean does exist.) The joint distribution of the order statistics is

which makes the computation of the posterior distribution rather straightforward. Here is the posterior surface (with an unfortunate rendering of an artefactual horizontal line at 237!), showing a concentration near the lower bound M=144. The posterior mode is actually achieved for M=144 and k=7, while the posterior means are (rounded as) M=169 and k=9.

## leave Bayes factors where they once belonged

Posted in Statistics with tags Bayes factors, Bayesian Analysis, Bayesian decision theory, cross validated, prior comparison, prior predictive, prior selection, The Bayesian Choice, The Beatles, using the data twice, xkcd on February 19, 2019 by xi'an**I**n the past weeks I have received and read several papers (and X validated entries)where the Bayes factor is used to compare priors. Which does not look right to me, not on the basis of my general dislike of Bayes factors!, but simply because this seems to clash with the (my?) concept of Bayesian model choice and also because data should not play a role in that situation, from being used to select a *prior*, hence at least twice to run the inference, to resort to a *single* parameter value (namely the one behind the data) to decide between two distributions, to having no asymptotic justification, to eventually favouring the prior concentrated on the maximum likelihood estimator. And more. But I fear that this reticence to test for prior adequacy also extends to the prior predictive, or Box’s p-value, namely the probability under this prior predictive to observe something “more extreme” than the current observation, to quote from David Spiegelhalter.

## Bayesian intelligence in Warwick

Posted in pictures, Statistics, Travel, University life, Wines with tags ABC, AI, artificial intelligence, Bayesian Analysis, Bayesian intelligence, CRiSM, effective dimension, estimating constants, Monte Carlo integration, neural network, paradoxes, seminar, University of Warwick on February 18, 2019 by xi'an**T**his is an announcement for an exciting CRiSM Day in Warwick on 20 March 2019: with speakers

10:00-11:00 Xiao-Li Meng (Harvard): “Artificial Bayesian Monte Carlo Integration: A Practical Resolution to the Bayesian (Normalizing Constant) Paradox”

11:00-12:00 Julien Stoehr (Dauphine): “Gibbs sampling and ABC”

14:00-15:00 Arthur Ulysse Jacot-Guillarmod (École Polytechnique Fedérale de Lausanne): “Neural Tangent Kernel: Convergence and Generalization of Deep Neural Networks”

15:00-16:00 Antonietta Mira (Università della Svizzera italiana e Università degli studi dell’Insubria): “Bayesian identifications of the data intrinsic dimensions”

[whose abstracts are on the workshop webpage] and free attendance. The title for the workshop mentions Bayesian Intelligence: this obviously includes human intelligence and not just AI!

## statistics in Nature [a tale of the two Steves]

Posted in Books, pictures, Statistics with tags Bayesian Analysis, causality, clinical trials, frequentism, Nature, p-value hacking, placebo effect, statistical evidence, Stephen Senn, variability on January 15, 2019 by xi'an**I**n the 29 November issue of Nature, Stephen Senn (formerly at Glasgow) wrote an article about the pitfalls of personalized medicine, for the statistics behind the reasoning are flawed.

“What I take issue with is the de facto assumption that the differential response to a drug is consistent for each individual, predictable and based on some stable property, such as a yet-to-be-discovered genetic variant.”S. Senn

One (striking) reason being that the studies rest on a sort of low-level determinism that does not account for many sources of variability. Over-confidence in causality results. Stephen argues that improvement lies in insisting on repeated experiments on the same subjects (with an increased challenge in modelling since this requires longitudinal models with dependent observations). And to “drop the use of dichotomies”, favouring instead continuous modeling of measurements.

And in the 6 December issue, Steven Goodman calls (in the World view tribune) for probability statements to be attached as confidence indices to scientific claims. That he takes great pain to distinguish from p-values and links with Bayesian analysis. (Bayesian analysis that Stephen regularly objects to.) While I applaud the call, I am quite pessimistic about the follow-up it will generate, the primary reply being that posterior probabilities can be manipulated as well as p-values. And that Bayesian probabilities are not “real” probabilities (dixit Don Fraser or Deborah Mayo).