*“The idea of building priors that generate reasonable data may seem like an unusual idea…”*

**A**ndrew, Dan, and Michael arXived a opinion piece last week entitled “The prior can generally only be understood in the context of the likelihood”. Which connects to the earlier Read Paper of Gelman and Hennig I discussed last year. I cannot state strong disagreement with the positions taken in this piece, actually, in that I do not think prior distributions ever occur as *a given* but are rather chosen as a reference measure to probabilise the parameter space and eventually prioritise regions over others. If anything I find myself even further on the prior agnosticism gradation. (Of course, this lack of disagreement applies to the likelihood understood as a function of both the data and the parameter, rather than of the parameter only, conditional on the data. Priors cannot be depending on the data without incurring disastrous consequences!)

*“…it contradicts the conceptual principle that the prior distribution should convey only information that is available before the data have been collected.”*

The first example is somewhat disappointing in that it revolves as so many Bayesian textbooks (since Laplace!) around the [sex ratio] Binomial probability parameter and concludes at the strong or long-lasting impact of the Uniform prior. I do not see much of a contradiction between the use of a Uniform prior and the collection of prior information, if only because there is not standardised way to transfer prior information into prior construction. And more fundamentally because a parameter rarely makes sense by itself, alone, without a model that relates it to potential data. As for instance in a regression model. More, following my epiphany of last semester, about the relativity of the prior, I see no damage in the prior being relevant, as I only attach a *relative* meaning to statements based on the posterior. Rather than trying to limit the impact of a prior, we should rather build assessment tools to measure this impact, for instance by prior predictive simulations. And this is where I come to quite agree with the authors.

*“…non-identifiabilities, and near nonidentifiabilites, of complex models can lead to unexpected amounts of we**ight being given to certain aspects of the prior.”*

Another rather straightforward remark is that non-identifiable models see the impact of a prior remain as the sample size grows. And I still see no issue with this fact in a relative approach. When the authors mention (p.7) that purely mathematical priors perform more poorly than weakly informative priors it is hard to see what they mean by this “performance”.

*“…judge a prior by examining the data generating processes it favors and disfavors.”*

Besides those points, I completely agree with them about the fundamental relevance of the prior as a generative process, only when the likelihood becomes available. And simulatable. (This point is found in many references, including our response to the American Statistician paper *Hidden dangers of specifying noninformative priors*, with Kaniav Kamary. With the same illustration on a logistic regression.) I also agree to their criticism of the marginal likelihood and Bayes factors as being so strongly impacted by the choice of a prior, if treated as absolute quantities. I also if more reluctantly and somewhat heretically see a point in using the posterior predictive for assessing whether a prior is relevant for the data at hand. At least at a conceptual level. I am however less certain about how to handle improper priors based on their recommendations. In conclusion, it would be great to see one [or more] of the authors at O-Bayes 2017 in Austin as I am sure it would stem nice discussions there! (And by the way I have no prior idea on how to conclude the comparison in the title!)