Archive for Bayesian Analysis

marginal likelihood with large amounts of missing data

Posted in Books, pictures, Statistics with tags , , , , , , , , on October 20, 2020 by xi'an

In 2018, Panayiota Touloupou, research fellow at Warwick, and her co-authors published a paper in Bayesian analysis that somehow escaped my radar, despite standing in my first circle of topics of interest! They construct an importance sampling approach to the approximation of the marginal likelihood, the importance function being approximated from a preliminary MCMC run, and consider the special case when the sampling density (i.e., the likelihood) can be represented as the marginal of a joint density. While this demarginalisation perspective is rather usual, the central point they make is that it is more efficient to estimate the sampling density based on the auxiliary or latent variables than to consider the joint posterior distribution of parameter and latent in the importance sampler. This induces a considerable reduction in dimension and hence explains (in part) why the approach should prove more efficient. Even though the approximation itself is costly, at about 5 seconds per marginal likelihood. But a nice feature of the paper is to include the above graph that includes both computing time and variability for different methods (the blue range corresponding to the marginal importance solution, the red range to RJMCMC and the green range to Chib’s estimate). Note that bridge sampling does not appear on the picture but returns a variability that is similar to the proposed methodology.

JB³ [Junior Bayes beyond the borders]

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , , , , , , , on June 22, 2020 by xi'an

Bocconi and j-ISBA are launcing a webinar series for and by junior Bayesian researchers. The first talk is on 25 June, 25 at 3pm UTC/GMT (5pm CET) with Francois-Xavier Briol, one of the laureates of the 2020 Savage Thesis Prize (and a former graduate of OxWaSP, the Oxford-Warwick doctoral training program), on Stein’s method for Bayesian computation, with as a discussant Nicolas Chopin.

As pointed out on their webpage,

Due to the importance of the above endeavor, JB³ will continue after the health emergency as an annual series. It will include various refinements aimed at increasing the involvement of the whole junior Bayesian community and facilitating a broader participation to the online seminars all over the world via various online solutions.

Thanks to all my friends at Bocconi for running this experiment!

data science [down] under the hood [webinar]

Posted in Statistics with tags , , , , , , on June 21, 2020 by xi'an

Monte Carlo Markov chains

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , , , , , , , , , , , on May 12, 2020 by xi'an

Darren Wraith pointed out this (currently free access) Springer book by Massimiliano Bonamente [whose family name means good spirit in Italian] to me for its use of the unusual Monte Carlo Markov chain rendering of MCMC.  (Google Trend seems to restrict its use to California!) This is a graduate text for physicists, but one could nonetheless expect more rigour in the processing of the topics. Particularly of the Bayesian topics. Here is a pot-pourri of memorable quotes:

“Two major avenues are available for the assignment of probabilities. One is based on the repetition of the experiments a large number of times under the same conditions, and goes under the name of the frequentist or classical method. The other is based on a more theoretical knowledge of the experiment, but without the experimental requirement, and is referred to as the Bayesian approach.”

“The Bayesian probability is assigned based on a quantitative understanding of the nature of the experiment, and in accord with the Kolmogorov axioms. It is sometimes referred to as empirical probability, in recognition of the fact that sometimes the probability of an event is assigned based upon a practical knowledge of the experiment, although without the classical requirement of repeating the experiment for a large number of times. This method is named after the Rev. Thomas Bayes, who pioneered the development of the theory of probability.”

“The likelihood P(B/A) represents the probability of making the measurement B given that the model A is a correct description of the experiment.”

“…a uniform distribution is normally the logical assumption in the absence of other information.”

“The Gaussian distribution can be considered as a special case of the binomial, when the number of tries is sufficiently large.”

“This clearly does not mean that the Poisson distribution has no variance—in that case, it would not be a random variable!”

“The method of moments therefore returns unbiased estimates for the mean and variance of every distribution in the case of a large number of measurements.”

“The great advantage of the Gibbs sampler is the fact that the acceptance is 100 %, since there is no rejection of candidates for the Markov chain, unlike the case of the Metropolis–Hastings algorithm.”

Let me then point out (or just whine about!) the book using “statistical independence” for plain independence, the use of / rather than Jeffreys’ | for conditioning (and sometimes forgetting \ in some LaTeX formulas), the confusion between events and random variables, esp. when computing the posterior distribution, between models and parameter values, the reliance on discrete probability for continuous settings, as in the Markov chain chapter, confusing density and probability, using Mendel’s pea data without mentioning the unlikely fit to the expected values (or, as put more subtly by Fisher (1936), “the data of most, if not all, of the experiments have been falsified so as to agree closely with Mendel’s expectations”), presenting Fisher’s and Anderson’s Iris data [a motive for rejection when George was JASA editor!] as a “a new classic experiment”, mentioning Pearson but not Lee for the data in the 1903 Biometrika paper “On the laws of inheritance in man” (and woman!), and not accounting for the discrete nature of this data in the linear regression chapter, the three page derivation of the Gaussian distribution from a Taylor expansion of the Binomial pmf obtained by differentiating in the integer argument, spending endless pages on deriving standard properties of classical distributions, this appalling mess of adding over the conditioning atoms with no normalisation in a Poisson experiment

P(X=4|\mu=0,1,2) = \sum_{\mu=0}^2 \frac{\mu^4}{4!}\exp\{-\mu\},

botching the proof of the CLT, which is treated before the Law of Large Numbers, restricting maximum likelihood estimation to the Gaussian and Poisson cases and muddling its meaning by discussing unbiasedness, confusing a drifted Poisson random variable with a drift on its parameter, as well as using the pmf of the Poisson to define an area under the curve (Fig. 5.2), sweeping the improperty of a constant prior under the carpet, defining a null hypothesis as a range of values for a summary statistic, no mention of Bayesian perspectives in the hypothesis testing, model comparison, and regression chapters, having one-dimensional case chapters followed by two-dimensional case chapters, reducing model comparison to the use of the Kolmogorov-Smirnov test, processing bootstrap and jackknife in the Monte Carlo chapter without a mention of importance sampling, stating recurrence results without assuming irreducibility, motivating MCMC by the intractability of the evidence, resorting to the term link to designate the current value of a Markov chain, incorporating the need for a prior distribution in a terrible description of the Metropolis-Hastings algorithm, including a discrete proof for its stationarity, spending many pages on early 1990’s MCMC convergence tests rather than discussing the adaptive scaling of proposal distributions, the inclusion of numerical tables [in a 2017 book] and turning Bayes (1763) into Bayes and Price (1763), or Student (1908) into Gosset (1908).

[Usual disclaimer about potential self-plagiarism: this post or an edited version of it could possibly appear later in my Books Review section in CHANCE. Unlikely, though!]

deduplication and population size estimation [discussion]

Posted in Books, Statistics with tags , , , , , , on April 23, 2020 by xi'an

[Here is my discussion on the paper “A Unified Framework for De-Duplication and Population Size Estimation” by [my friends] Andrea Tancredi, Rebecca Steorts, and Brunero Liseo, to appear on the June 2020 issue of Bayesian Analysis. The deadline is 24 April. Discussions are to be submitted to BA as regular submissions.]

Congratulations to the authors, for this paper that expand the modelling of populations investigated by faulty surveys, a poor quality feature that applies to extreme cases like Syria casualties. And possibly COVID-19 victims.

The model considered in this paper, as given by (2.1), is a latent variable model which appears as hyper-parameterised in the sense it involves a large number of parameters and latent variables. First, this means it is essentially intractable outside a Bayesian resolution. Second, within the Bayesian perspective, it calls for identifiability and consistency questions, namely which fraction of the unknown entities is identifiable and which fraction can be consistently estimated, eventually severing the dependence on the prior modelling. Personal experiences with capture-recapture models on social data like drug addict populations showed me that prior choices often significantly drive posterior inference on the population size. Here, it seems that the generative distortion mechanism between registry of individuals and actual records is paramount.

“We now investigate an alternative aspect of the uniform prior distribution of λ given N.”

Since the practical application stressed in the title, namely some of civil casualties in Syria, interrogations take a more topical flavour as one wonders at the connection between the model and the actual data, between the prior modelling and the available prior information. It is however not the strategy adopted in the paper, which instead proposes a generic prior modelling that could be deemed to be non-informative. I find the property that conditioning on the list sizes eliminates the capture probabilities and the duplication rates quite amazing, reminding me indeed of similar properties for conjugate mixtures, although we found the property hard to exploit from a computational viewpoint. And that the hit-miss model provides computationally tractable marginal distributions for the cluster observations.

“Several records of the VDC data set represent unidentified victims and report only the date of death or do not have the first name and report only the relationship with the head of the family.”

This non-informative choice is however quite informative in the misreporting mechanism and does not address the issue that it presumably is misspecified. It indeed makes the assumption that individual label and type of record are jointly enough to explain the probability of misreporting the exact record. In practical cases, it seems more realistic that the probability to appear in a list depends on the characteristics of an individual, hence far from being uniform as well as independent from one list to the next. The same applies to the probability of being misreported. The alternative to the uniform allocation of individuals to lists found in (3.3) remains neutral to the reasons why (some) individuals are missing from (some) lists. No informative input is indeed made here on how duplicates could appear or on how errors are made in registering individuals. Furthermore, given the high variability observed in inferring the number of actual deaths covered by the collection of the two lists, it would have been of interest to include a model comparison assessment, especially when contemplating the clash between the four posteriors in Figure 4.

The implementation of a manageable Gibbs sampler in such a convoluted model is quite impressive and one would welcome further comments from the authors on its convergence properties, since it is facing a large dimensional space. Are there theoretical or numerical irreducibility issues for instance, created by the discrete nature of some latent variables as in mixture models?