Archive for Bayesian Analysis

another wrong entry

Posted in Books, Kids, R, Statistics, University life with tags , , , , , , on June 27, 2016 by xi'an

Quite a coincidence! I just came across another bug in Lynch’s (2007) book, Introduction to Applied Bayesian Statistics and Estimation for Social Scientists. Already discussed here and on X validated. While working with one participant to the post-ISBA softshop, we were looking for efficient approaches to simulating correlation matrices and came [by Google] across the above R code associated with a 3×3 correlation matrix, which misses the additional constraint that the determinant must be positive. As shown e.g. by the example

> eigen(matrix(c(1,-.8,.7,-.8,1,.6,.7,.6,1),ncol=3))
$values
[1] 1.8169834 1.5861960 -0.4031794

having all correlations between -1 and 1 is not enough. Just. Not. Enough.

SADA’16

Posted in pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , on April 28, 2016 by xi'an

comments on Watson and Holmes

Posted in Books, pictures, Statistics, Travel with tags , , , , , , , , , on April 1, 2016 by xi'an


“The world is full of obvious things which nobody by any chance ever observes.” The Hound of the Baskervilles

In connection with the incoming publication of James Watson’s and Chris Holmes’ Approximating models and robust decisions in Statistical Science, Judith Rousseau and I wrote a discussion on the paper that has been arXived yesterday.

“Overall, we consider that the calibration of the Kullback-Leibler divergence remains an open problem.” (p.18)

While the paper connects with earlier ones by Chris and coauthors, and possibly despite the overall critical tone of the comments!, I really appreciate the renewed interest in robustness advocated in this paper. I was going to write Bayesian robustness but to differ from the perspective adopted in the 90’s where robustness was mostly about the prior, I would say this is rather a Bayesian approach to model robustness from a decisional perspective. With definitive innovations like considering the impact of posterior uncertainty over the decision space, uncertainty being defined e.g. in terms of Kullback-Leibler neighbourhoods. Or with a Dirichlet process distribution on the posterior. This may step out of the standard Bayesian approach but it remains of definite interest! (And note that this discussion of ours [reluctantly!] refrained from capitalising on the names of the authors to build easy puns linked with the most Bayesian of all detectives!)

approximate Bayesian inference

Posted in Books, pictures, Statistics, Travel, University life with tags , , , , , , , , on March 23, 2016 by xi'an

Maybe it is just a coincidence, but both most recent issues of Bayesian Analysis have an article featuring approximate Bayesian inference. One is by Daniel Add Contact Form Graham and co-authors on Approximate Bayesian Inference for Doubly Robust Estimation, while the other one is by Chris Drovandi and co-authors from QUT on Exact and Approximate Bayesian Inference for Low Integer-Valued Time Series Models with Intractable Likelihoods. The first paper has little connection with ABC. Even though it (a) uses a lot of three letter acronyms [which does not help with speed reading] and (b) relies on moment based and propensity score models. Instead, it relies on Bayesian bootstrap, which suddenly seems to me to be rather connected with empirical likelihood! Except the weights are estimated via a Dirichlet prior instead of being optimised. The approximation lies in using the bootstrap to derive a posterior predictive. I did not spot any assessment or control of the approximation effect in the paper.

“Note that we are always using the full data so avoiding the need to choose a summary statistic” (p.326)

The second paper connects pMCMC with ABC. Plus pseudo-marginals on the side! And even simplified reversible jump MCMC!!! I am far from certain I got every point of the paper, though, especially the notion of dimension reduction associated with this version of reversible jump MCMC. It may mean that latent variables are integrated out in approximate (marginalised) likelihoods [as explicated in Andrieu and Roberts (2009)].

“The difference with the common ABC approach is that we match on observations one-at-a-time” (p.328)

The model that the authors study is an integer value time-series, like the INAR(p) model. Which integer support allows for a non-zero probability of exact matching between simulated and observed data. One-at-a-time as indicated in the above quote. And integer valued tolerances like ε=1 otherwise. In the case auxiliary variables are necessary, the authors resort to the alive particle filter of Jasra et al. (2013), which main point is to produce an unbiased estimate of the (possibly approximate) likelihood, to be exploited by pseudo-marginal techniques. However, unbiasedness sounds less compelling when moving to approximate methods, as illustrated by the subsequent suggestion to use a more stable estimate of the log-likelihood. In fact, when the tolerance ε is positive, the pMCMC acceptance probability looks quite close to an ABC-MCMC probability when relying on several pseudo-data simulations. Which is unbiased for the “right” approximate target. A fact that may actually holds for all ABC algorithms. One quite interesting aspect of the paper is its reflection about the advantage of pseudo-marginal techniques for RJMCMC algorithms since they allow for trans-dimension moves to be simplified, as they consider marginals on the space of interest. Up to this day, I had not realised Andrieu and Roberts (2009) had a section on this aspect… I am still unclear about the derivation of the posterior probabilities of the models under comparison, unless it is a byproduct of the RJMCMC algorithm. A last point is that, for some of the Markov models used in the paper, the pseudo observations can be produced as a random one-time move away from the current true observation, which makes life much easier for ABC and explain why exact simulations can sometimes be produced. (A side note: the authors mention on p.326 that EP is only applicable when the posterior is from an exponential family, while my understanding is that it uses an exponential family to approximate the true posterior.)

Bayesian composite likelihood

Posted in Books, Statistics, University life with tags , , , , , , on February 11, 2016 by xi'an

“…the pre-determined weights assigned to the different associations between observed and unobserved values represent strong a priori knowledge regarding the informativeness of clues. A poor choice of weights will inevitably result in a poor approximation to the “true” Bayesian posterior…”

Last Xmas, Alexis Roche arXived a paper on Bayesian inference via composite likelihood. I find the paper quite interesting in that [and only in that] it defends the innovative notion of writing a composite likelihood as a pool of opinions about some features of the data. Recall that each term in the composite likelihood is a marginal likelihood for some projection z=f(y) of the data y. As in ABC settings, although it is rare to derive closed-form expressions for those marginals. The composite likelihood is parameterised by powers of those components. Each component is associated with an expert, whose weight reflects the importance. The sum of the powers is constrained to be equal to one, even though I do not understand why the dimensions of the projections play no role in this constraint. Simplicity is advanced as an argument, which sounds rather weak… Even though this may be infeasible in any realistic problem, it would be more coherent to see the weights as producing the best Kullback approximation to the true posterior. Or to use a prior on the weights and estimate them along the parameter θ. The former could be incorporated into the later following the approach of Holmes & Walker (2013). While the ensuing discussion is most interesting, it remains missing in connecting the different components in terms of the (joint) information brought about the parameters. Especially because the weights are assumed to be given rather than inferred. Especially when they depend on θ. I also wonder why the variational Bayes interpretation is not exploited any further. And see no clear way to exploit this perspective in an ABC environment.

R typos

Posted in Books, Kids, R, Statistics, Travel, University life with tags , , , , , , , , on January 27, 2016 by xi'an

Amster14At MCMskv, Alexander Ly (from Amsterdam) pointed out to me some R programming mistakes I made in the introduction to Metropolis-Hastings algorithms I wrote a few months ago for the Wiley on-line encyclopedia! While the outcome (Monte Carlo posterior) of the corrected version is moderately changed this is nonetheless embarrassing! The example (if not the R code) was a mixture of a Poisson and a Geometric distributions borrowed from our testing as mixture paper. Among other things, I used a flat prior on the mixture weights instead of a Beta(1/2,1/2) prior and a simple log-normal random walk on the mean parameter instead of a more elaborate second order expansion discussed in the text. And I also inverted the probabilities of success and failure for the Geometric density. The new version is now available on arXiv, and hopefully soon on the Wiley site, but one (the?) fact worth mentioning here is that the (right) corrections in the R code first led to overflows, because I was using the Beta random walk Be(εp,ε(1-p)) which major drawback I discussed here a few months ago. With the drag that nearly zero or one values of the weight parameter produced infinite values of the density… Adding 1 (or 1/2) to each parameter of the Beta proposal solved the problem. And led to a posterior on the weight still concentrating on the correct corner of the unit interval. In any case, a big thank you to Alexander for testing the R code and spotting out the several mistakes…

done! [#1]

Posted in Kids, pictures, University life with tags , , , , , , on January 16, 2016 by xi'an

After spending a few hours grading my 127 exams for most nights of this week, I am finally done with it! One of the exam questions was the simulation of XY when (X,Y) is a bivariate normal vector with correlation ρ, following the trick described in a X validated question asked a few months ago, namely that

XY≡R{cos(πU)+ρ}

but no one managed to establish this representation. And, as usual, some students got confused between parameters θ and observations x when writing a posterior density, since the density of the prior was defined in the exam with the dummy x, thereby recovering the prior as the posterior. Nothing terrible and nothing exceptional with this cohort of undergraduates. And now I still have to go through my second pile of exams for the graduate course I taught on Bayesian computational tools…

Follow

Get every new post delivered to your Inbox.

Join 1,079 other followers