Archive for FiveThirtyEight

one or two?

Posted in Books, Kids, R with tags , , , , , , on March 12, 2020 by xi'an

A superposition of two random walks from The Riddler:

Starting from zero, a random walk is produced by choosing moves between ±1 and ±2 at each step. If the choice between both is made towards maximising the probability of ending up positive after 100 steps, what is this probability?

Although the optimal path is not necessarily made of moves that optimise the probability of ending up positive after the remaining steps, I chose to follow a dynamic programming approach by picking between ±1 and ±2 at each step based on that probability:

bs=matrix(0,405,101) #best stategy with value i-203 at time j-1
bs[204:405,101]=1
for (t in 100:1){
  tt=2*t
  bs[203+(-tt:tt),t]=.5*apply(cbind(
     bs[204+(-tt:tt),t+1]+bs[202+(-tt:tt),t+1],
     bs[201+(-tt:tt),t+1]+bs[205+(-tt:tt),t+1]),1,max)}

resulting in the probability

> bs[203,1]
[1] 0.6403174

Just checking that a simple strategy of picking ±1 above zero and ±2 below leads to the same value

ga=rep(0,T)
for(v in 1:100) ga=ga+(1+(ga<1))*sample(c(-1,1),T,rep=TRUE)

or sort of

> mean(ga>0)
[1] 0.6403494

With highly similar probabilities when switching at ga<2

> mean(ga>0)
[1] 0.6403183

or ga<0

> mean(ga>0)
[1] 0.6403008

and too little difference to spot a significant improvement between the three boundaries.

multiplying the bars

Posted in Kids, R with tags , , , , , , , on February 25, 2020 by xi'an

The latest Riddler makes the remark that the expression

|-1|-2|-3|

has no unique meaning (and hence value) since it could be

| -1x|-2|-3 | = 5   or   |-1| – 2x|-3| = -5

depending on the position of the multiplication sign and asks for all the possible values of

|-1|-2|…|-9|

which can be explored by a recursive R function for computing |-i|-(i+1)|…|-(i+2j)|

vol<-function(i,j){x=i
  if(j){x=c(i-(i+1)*vol(i+2,j-1),abs(i*vol(i+1,j-1)+i+2*j))
  if(j>1){for(k in 1:(j-2))
        x=c(x,vol(i,k)-(i+2*k+1)*vol(i+2*k+2,j-k-1))}}
  return(x)}

producing 40 different values for the ill-defined expression. However, this is incorrect as the product(s) hidden in the expression only involve a single term in vol(i,j)… I had another try with the decomposition of the expression vol(i,j) into a first part and a second part

prod<-function(a,b) a*b[,1]+b[,2]

val<-function(i,j){
  x=matrix(c(i,0),ncol=2)
  if(j){x=rbind(cbind(i,prod(-(i+1),val(i+2,j-1))),
          cbind(abs(prod(-i,val(i+1,j-1))-i-2*j),0))
    if(j-1){for(k in 2:(j-1)){
      pon=val(i,k-1)
      for(m in 1:dim(pon)[1])
          x=rbind(x,cbind(pon[m,1],pon[m,2]+prod(-(i+2*k-1),val(i+2*k,j-k))))}}}
  return(x)}

but it still fails to produce the right version.

a non-riddle

Posted in Books, Kids, R with tags , , on July 12, 2019 by xi'an

Unless I missed a point in the last riddle from the Riddler, there is very little to say about it:

Given N ocre balls, N aquamarine balls, and two urns, what is the optimal way to allocate the balls to the urns towards drawing an ocre ball with no urn being empty?

Both my reasoning and a two line exploration code led to having one urn with only one ocre ball (and no acquamarine ball) and all the other balls in the second urn.

odz<-function(n,m,t) 2*m/n+(t-2*m)/(t-n)
probz=matrix(0,trunc(N/2)-1,N-1)
for (n in 1:(N-1))
  for (m in 1:(trunc(N/2)-1))
    probz[m,n]=odz(n,m,N)

riddles on Egyptian fractions and Bernoulli factories

Posted in Books, Kids, R with tags , , , , , , , , , , , , , on June 11, 2019 by xi'an

Two fairy different riddles on the weekend Riddler. The first one is (in fine) about Egyptian fractions: I understand the first one as

Find the Egyptian fraction decomposition of 2 into 11 distinct unit fractions that maximises the smallest fraction.

And which I cannot solve despite perusing this amazing webpage on Egyptian fractions and making some attempts at brute force  random exploration. Using Fibonacci’s greedy algorithm. I managed to find such decompositions

2 = 1 +1/2 +1/6 +1/12 +1/16 +1/20 +1/24 +1/30 +1/42 +1/48 +1/56

after seeing in this short note

2 = 1 +1/3 +1/5 +1/7 +1/9 +1/42 +1/15 +1/18 +1/30 +1/45 +1/90

And then Robin came with the following:

2 = 1 +1/4 +1/5 +1/8 +1/10 +1/12 +1/15 +1/20 +1/21 +1/24 +1/28

which may prove to be the winner! But there is even better:

2 = 1 +1/5 +1/6 +1/8 +1/9 +1/10 +1/12 +1/15 +1/18 +1/20 +1/24

The second riddle is a more straightforward Bernoulli factory problem:

Given a coin with a free-to-choose probability p of head, design an experiment with a fixed number k of draws that returns three outcomes with equal probabilities.

For which I tried a brute-force search of all possible 3-partitions of the 2-to-the-k events for a range of values of p from .01 to .5 and for k equal to 3,4,… But never getting an exact balance between the three groups. Reading later the solution on the Riddler, I saw that there was an exact solution for 4 draws when

p=\frac{3-\sqrt{3(4\sqrt{9}-6)}}{6}

Augmenting the precision of my solver (by multiplying all terms by 100), I indeed found a difference of

> solver((3-sqrt(3*(4*sqrt(6)-9)))/6,ba=1e5)[1]
[1] 8.940697e-08

which means an error of 9 x 100⁻⁴ x 10⁻⁸, ie roughly 10⁻¹⁵.

take a random integer

Posted in Books, Statistics with tags , , on February 16, 2019 by xi'an

A weird puzzle from FiveThirtyEight: what is the probability that the product of three random integers is a multiple of 100? Ehrrrr…, what is a random integer?! The solution provided by the Riddler is quite stunning

Reading the question charitably (since “random integer” has no specific meaning), there will be an answer if there is a limit for a uniform distribution of positive integers up to some number . But we can ignore that technicality, and make do with the idealization that since every second, fourth, fifth, and twenty-fifth integer are divisible by and , the chances of getting a random integer divisible by those numbers are , , , and .

as it acknowledges that the question is meaningless, then dismisses this as a “technicality” and still handles a Uniform random integer on {1,2,…,N} as N grows to infinity! Since all that matters is the remainder of the “random variable” modulo 100, this remainder will see its distribution vary as N moves to infinity, even though it indeed stabilises for $N$ large enough…

missing digit in a 114 digit number [a Riddler’s riddle]

Posted in R, Running, Statistics with tags , , , , , , , on January 31, 2019 by xi'an

A puzzling riddle from The Riddler (as Le Monde had a painful geometry riddle this week): this number with 114 digits

530,131,801,762,787,739,802,889,792,754,109,70?,139,358,547,710,066,257,652,050,346,294,484,433,323,974,747,960,297,803,292,989,236,183,040,000,000,000

is missing one digit and is a product of some of the integers between 2 and 99. By comparison, 76! and 77! have 112 and 114 digits, respectively. While 99! has 156 digits. Using WolframAlpha on-line prime factor decomposition code, I found that only 6 is a possible solution, as any other integer between 0 and 9 included a large prime number in its prime decomposition:

However, I thought anew about it when swimming the next early morning [my current substitute to morning runs] and reasoned that it was not necessary to call a formal calculator as it is reasonably easy to check that this humongous number has to be divisible by 9=3×3 (for else there are not enough terms left to reach 114 digits, checked by lfactorial()… More precisely, 3³³x33! has 53 digits and 99!/3³³x33! 104 digits, less than 114), which means the sum of all digits is divisible by 9, which leads to 6 as the unique solution.

 

and another step forward for Ireland!

Posted in pictures with tags , , , , , , , , , , , on October 28, 2018 by xi'an