Archive for Gibbs sampling

repulsive mixtures

Posted in Books, Statistics with tags , , , , , , , , on April 10, 2017 by xi'an

Fangzheng Xie and Yanxun Xu arXived today a paper on Bayesian repulsive modelling for mixtures. Not that Bayesian modelling is repulsive in any psychological sense, but rather that the components of the mixture are repulsive one against another. The device towards this repulsiveness is to add a penalty term to the original prior such that close means are penalised. (In the spirit of the sugar loaf with water drops represented on the cover of Bayesian Choice that we used in our pinball sampler, repulsiveness being there on the particles of a simulated sample and not on components.) Which means a prior assumption that close covariance matrices are of lesser importance. An interrogation I have has is was why empty components are not excluded as well, but this does not make too much sense in the Dirichlet process formulation of the current paper. And in the finite mixture version the Dirichlet prior on the weights has coefficients less than one.

The paper establishes consistency results for such repulsive priors, both for estimating the distribution itself and the number of components, K, under a collection of assumptions on the distribution, prior, and repulsiveness factors. While I have no mathematical issue with such results, I always wonder at their relevance for a given finite sample from a finite mixture in that they give an impression that the number of components is a perfectly estimable quantity, which it is not (in my opinion!) because of the fluid nature of mixture components and therefore the inevitable impact of prior modelling. (As Larry Wasserman would pound in, mixtures like tequila are evil and should likewise be avoided!)

The implementation of this modelling goes through a “block-collapsed” Gibbs sampler that exploits the latent variable representation (as in our early mixture paper with Jean Diebolt). Which includes the Old Faithful data as an illustration (for which a submission of ours was recently rejected for using too old datasets). And use the logarithm of the conditional predictive ordinate as  an assessment tool, which is a posterior predictive estimated by MCMC, using the data a second time for the fit.

recycling Gibbs auxiliaries [a reply]

Posted in Books, pictures, Statistics, University life with tags , , , , , , , on January 3, 2017 by xi'an

[Here is a reply sent to me by Luca Martino, Victor Elvira, and Gustau Camp-Vallis, after my earlier comments on their paper.]

We provide our contribution to the discussion, reporting our experience with the application of Metropolis-within-Gibbs schemes. Since in literature there are miscellaneous opinions, we want to point out the following considerations:

– according to our experience, the use of M>1 steps of the Metropolis-Hastings (MH) method for drawing from each full-conditional (with or without recycling), decreases the MSE of the estimation (see code Ex1-Ex2 and related Figure 7(b) and Figures 8). If the corresponding full conditional is very concentrated, one possible solution is to applied an adaptive or automatic MH for drawing from this full-conditional (it can require the use of M internal steps; see references in Section 3.2).

– Fixing the number of evaluations of the posterior, the comparison between a longer Gibbs chain with a single step of MH and a shorter Gibbs chain with M>1 steps of MH per each full-conditional, is required. Generally, there is no clear winner. The better performance depends on different aspects: the specific scenario, if and adaptive MH is employed or not, if the recycling is applied or not (see Figure 10(a) and the corresponding code Ex2).

The previous considerations are supported/endorsed by several authors (see the references in Section 3.2). In order to highlight the number of controversial opinions about the MH-within-Gibbs implementation, we report a last observation:

– If it is possible to draw directly from the full-conditionals, of course this is the best scenario (this is our belief). Remarkably, as also reported in Chapter 1, page 393 of the book “Monte Carlo Statistical Methods”, C. Robert and Casella, 2004, some authors have found that a “bad” choice of the proposal function in the MH step (i.e., different from the full conditional, or a poor approximation of it) can improve the performance of the MH-within-Gibbs sampler. Namely, they assert that a more “precise” approximation of the full-conditional does not necessarily improve the overall performance. In our opinion, this is possibly due to the fact that the acceptance rate in the MH step (lower than 1) induces an “accidental” random scan of the components of the target pdf in the Gibbs sampler, which can improve the performance in some cases. In our work, for the simplicity, we only focus on the deterministic scan. However, a random scan could be also considered.

recycling Gibbs auxiliaries

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , , , on December 6, 2016 by xi'an

wreck of the S.S. Dicky, Caloundra beach, Qld, Australia, Aug. 19, 2012Luca Martino, Victor Elvira and Gustau Camps-Valls have arXived a paper on recycling for Gibbs sampling. The argument therein is to take advantage of all simulations induced by MCMC simulation for one full conditional, towards improving estimation if not convergence. The context is thus one when Metropolis-within-Gibbs operates, with several (M) iterations of the corresponding Metropolis being run instead of only one (which is still valid from a theoretical perspective). While there are arguments in augmenting those iterations, as recalled in the paper, I am not a big fan of running a fixed number of M of iterations as this does not approximate better the simulation from the exact full conditional and even if this approximation was perfect, the goal remains simulating from the joint distribution. As such, multiplying the number of Metropolis iterations does not necessarily impact the convergence rate, only brings it closer to the standard Gibbs rate. Moreover, the improvement does varies with the chosen component, meaning that the different full conditionals have different characteristics that produce various levels of variance reduction:

  • if the targeted expectation only depends on one component of the Markov chain, multiplying the number of simulations for the other components has no clear impact, except in increasing time;
  • if the corresponding full conditional is very concentrated, repeating simulations should produce quasi-repetitions, and no gain.

The only advantage in computing time that I can see at this stage is when constructing the MCMC sampler for the full proposal is much more costly than repeating MCMC iterations, which are then almost free and contribute to the reduction of the variance of the estimator.

This analysis of MCMC-withing-Gibbs strategies reminds me of a recent X validated question, which was about the proper degree of splitting simulations from a marginal and from a corresponding conditional in the chain rule, the optimal balance being in my opinion dependent on the relative variances of the conditional expectations.

A last point is that recycling in the context of simulation and Monte Carlo methodology makes me immediately think of Rao-Blackwellisation, which is surprisingly absent from the current paperRao-Blackwellisation was introduced in the MCMC literature and to the MCMC community in the first papers of Alan Gelfand and Adrian Smith, in 1990. While this is not always producing a major gain in Monte Carlo variability, it remains a generic way of recycling auxiliary variables as shown, e.g., in the recycling paper we wrote with George Casella in 1996, one of my favourite papers.

Example 7.3: what a mess!

Posted in Books, Kids, R, Statistics, University life with tags , , , , , , on November 13, 2016 by xi'an

Robert_Casella_RBookA rather obscure question on Metropolis-Hastings algorithms on X Validated ended up being about our first illustration in Introducing Monte Carlo methods with R. And exposing some inconsistencies in the following example… Example 7.2 is based on a [toy] joint Beta x Binomial target, which leads to a basic Gibbs sampler. We thought this was straightforward, but it may confuse readers who think of using Gibbs sampling for posterior simulation as, in this case, there is neither observation nor posterior, but simply a (joint) target in (x,θ).

Example 7.3And then it indeed came out that we had incorrectly written Example 7.3 on the [toy] Normal posterior, using at times a Normal mean prior with a [prior] variance scaled by the sampling variance and at times a Normal mean prior with a [prior] variance unscaled by the sampling variance. I am rather amazed that this did not show up earlier. Although there were already typos listed about that example.Example 7.3 (7.4)

common derivation for Metropolis–Hastings and other MCMC algorithms

Posted in Books, pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , on July 25, 2016 by xi'an

Khoa Tran and Robert Kohn from UNSW just arXived a paper on a comprehensive derivation of a large range of MCMC algorithms, beyond Metropolis-Hastings. The idea is to decompose the MCMC move into

  1. a random completion of the current value θ into V;
  2. a deterministic move T from (θ,V) to (ξ,W), where only ξ matters.

If this sounds like a new version of Peter Green’s completion at the core of his 1995 RJMCMC algorithm, it is bedowntown Sydney from under Sydney Harbour bridge, July 15, 2012cause it is indeed essentially the same notion. The resort to this completion allows for a standard form of the Metropolis-Hastings algorithm, which leads to the correct stationary distribution if T is self-inverse. This representation covers Metropolis-Hastings algorithms, Gibbs sampling, Metropolis-within-Gibbs and auxiliary variables methods, slice sampling, recursive proposals, directional sampling, Langevin and Hamiltonian Monte Carlo, NUTS sampling, pseudo-marginal Metropolis-Hastings algorithms, and pseudo-marginal Hamiltonian  Monte Carlo, as discussed by the authors. Given this representation of the Markov chain through a random transform, I wonder if Peter Glynn’s trick mentioned in the previous post on retrospective Monte Carlo applies in this generic setting (as it could considerably improve convergence…)

inefficiency of data augmentation for large samples

Posted in Books, pictures, Running, Statistics, Travel, University life with tags , , , , , , , , , , on May 31, 2016 by xi'an

On Monday, James Johndrow, Aaron Smith, Natesh Pillai, and David Dunson arXived a paper on the diminishing benefits of using data augmentation for large and highly imbalanced categorical data. They reconsider the data augmentation scheme of Tanner and Wong (1987), surprisingly not mentioned, used in the first occurrences of the Gibbs sampler like Albert and Chib’s (1993) or our mixture estimation paper with Jean Diebolt (1990). The central difficulty with data augmentation is that the distribution to be simulated operates on a space that is of order O(n), even when the original distribution covers a single parameter. As illustrated by the coalescent in population genetics (and the subsequent intrusion of the ABC methodology), there are well-known cases when the completion is near to impossible and clearly inefficient (as again illustrated by the failure of importance sampling strategies on the coalescent). The paper provides spectral gaps for the logistic and probit regression completions, which are of order a power of log(n) divided by √n, when all observations are equal to one. In a somewhat related paper with Jim Hobert and Vivek Roy, we studied the spectral gap for mixtures with a small number of observations: I wonder at the existence of a similar result in this setting, when all observations stem from one component of the mixture, when all observations are one. The result in this paper is theoretically appealing, the more because the posteriors associated with such models are highly regular and very close to Gaussian (and hence not that challenging as argued by Chopin and Ridgway). And because the data augmentation algorithm is uniformly ergodic in this setting (as we established with Jean Diebolt  and later explored with Richard Tweedie). As demonstrated in the  experiment produced in the paper, when comparing with HMC and Metropolis-Hastings (same computing times?), which produce much higher effective sample sizes.

the last digit of e

Posted in Kids, Mountains, pictures, Statistics, Travel, University life with tags , , , , , , , on March 3, 2016 by xi'an

Éric Marchand from Sherbrooke, Québec [historical birthplace of MCMC, since Adrian Smith gave his first talk on his Gibbs sampler there, in June 1989], noticed my recent posts about the approximation of e by Monte Carlo methods and sent me a paper he wrote in The Mathematical Gazette of November 1995 [full MCMC era!] about original proofs on the expectation of some stopping rules being e, like the length of increasing runs. And Gnedenko’s uniform summation until exceeding one. Amazing that this simple problem generated so much investigation!!!