Archive for Royal Statistical Society

scalable Langevin exact algorithm [armchair Read Paper]

Posted in Books, pictures, Statistics, Travel, University life with tags , , , , , , , , , , , on June 26, 2020 by xi'an

So, Murray Pollock, Paul Fearnhead, Adam M. Johansen and Gareth O. Roberts presented their Read Paper with discussions on the Wednesday aft! With a well-sized if virtual audience of nearly a hundred people. Here are a few notes scribbled during the Readings. And attempts at keeping the traditional structure of the meeting alive.

In their introduction, they gave the intuition of a quasi-stationary chain as the probability to be in A at time t while still alice as π(A) x exp(-λt) for a fixed killing rate λ. The concept is quite fascinating if less straightforward than stationarity! The presentation put the stress on the available recourse to an unbiased estimator of the κ rate whose initialisation scaled as O(n) but allowed a subsampling cost reduction afterwards. With a subsampling rat connected with Bayesian asymptotics, namely on how quickly the posterior concentrates. Unfortunately, this makes the practical construction harder, since n is finite and the concentration rate is unknown (although a default guess should be √n). I wondered if the link with self-avoiding random walks was more than historical.

The initialisation of the method remains a challenge in complex environments. And hence one may wonder if and how better it does when compared with SMC. Furthermore, while the motivation for using a Brownian motion stems from the practical side, this simulation does not account for the target π. This completely blind excursion sounds worse than simulating from the prior in other settings.

One early illustration for quasi stationarity was based on an hypothetical distribution of lions and wandering (Brownian) antelopes. I found that the associated concept of soft killing was not necessarily well received by …. the antelopes!

As it happens, my friend and coauthor Natesh Pillai was the first discussant! I did no not get the details of his first bimodal example. But he addressed my earlier question about how large the running time T should be. Since the computational cost should be exploding with T. He also drew a analogy with improper posteriors as to wonder about the availability of convergence assessment.

And my friend and coauthor Nicolas Chopin was the second discussant! Starting with a request to… leave the Pima Indians (model)  alone!! But also getting into a deeper assessment of the alternative use of SMCs.

RSS honours recipients for 2020

Posted in Statistics with tags , , , , , , , , , , on March 16, 2020 by xi'an

Just read the news that my friend [and co-author] Arnaud Doucet (Oxford) is the winner of the 2020 Guy Silver Medal award from the Royal Statistical Society. I was also please to learn about David Spiegelhalter‘s Guy Gold medal (I first met David at the fourth Valencia Bayesian meeting in 1991, where he had a poster on the very early stages of BUGS) and Byron Morgan‘s Barnett Award for his indeed remarkable work on statistical ecology and in particular Bayesian capture recapture models. Congrats to all six recipients!

unbiased MCMC discussed at the RSS tomorrow night

Posted in Books, Kids, pictures, Statistics, Travel, University life with tags , , , , , , , , , , , on December 10, 2019 by xi'an

The paper ‘Unbiased Markov chain Monte Carlo methods with couplings’ by Pierre Jacob et al. will be discussed (or Read) tomorrow at the Royal Statistical Society, 12 Errol Street, London, tomorrow night, Wed 11 December, at 5pm London time. With a pre-discussion session at 3pm, involving Chris Sherlock and Pierre Jacob, and chaired by Ioanna Manolopoulou. While I will alas miss this opportunity, due to my trip to Vancouver over the weekend, it is great that that the young tradition of pre-discussion sessions has been rekindled as it helps put the paper into perspective for a wider audience and thus makes the more formal Read Paper session more profitable. As we discussed the paper in Paris Dauphine with our graduate students a few weeks ago, we will for certain send one or several written discussions to Series B!

unbiased Hamiltonian Monte Carlo with couplings

Posted in Books, Kids, Statistics, University life with tags , , , , , , on October 25, 2019 by xi'an

In the June issue of Biometrika, which had been sitting for a few weeks on my desk under my teapot!, Jeremy Heng and Pierre Jacob published a paper on unbiased estimators for Hamiltonian Monte Carlo using couplings. (Disclaimer: I was not involved with the review or editing of this paper.) Which extends to HMC environments the earlier paper of Pierre Jacob, John O’Leary and Yves Atchadé, to be discussed soon at the Royal Statistical Society. The fundamentals are the same, namely that an unbiased estimator can be produced from a converging sequence of estimators and that it can be de facto computed if two Markov chains with the same marginal can be coupled. The issue with Hamiltonians is to figure out how to couple their dynamics. In the Gaussian case, it is relatively easy to see that two chains with the same initial momentum meet periodically. In general, there is contraction within a compact set (Lemma 1). The coupling extends to a time discretisation of the Hamiltonian flow by a leap-frog integrator, still using the same momentum. Which roughly amounts in using the same random numbers in both chains. When defining a relaxed meeting (!) where both chains are within δ of one another, the authors rely on a drift condition (8) that reminds me of the early days of MCMC convergence and seem to imply the existence of a small set “where the target distribution [density] is strongly log-concave”. And which makes me wonder if this small set could be used instead to create renewal events that would in turn ensure both stationarity and unbiasedness without the recourse to a second coupled chain. When compared on a Gaussian example with couplings on Metropolis-Hastings and MALA (Fig. 1), the coupled HMC sees hardly any impact of the dimension of the target (in the average coupling time), with a much lower value. However, I wonder at the relevance of the meeting time as an assessment of efficiency. In the sense that the coupling time is not a convergence time but reflects as well on the initial conditions. I acknowledge that this allows for an averaging over  parallel implementations but I remain puzzled by the statement that this leads to “estimators that are consistent in the limit of the number of replicates, rather than in the usual limit of the number of Markov chain iterations”, since a particularly poor initial distribution could on principle lead to a mode of the target being never explored or on the coupling time being ever so rarely too large for the computing abilities at hand.

a statistic with consequences

Posted in pictures, Statistics with tags , , , , , , , on July 18, 2019 by xi'an

In the latest Significance, there was a flyer with some members updates, an important one being that Sylvia Richardson had been elected the next president of the Royal Statistical Society. Congratulations to my friend Sylvia! Another item was that the publication of the 2018 RSS Statistic of the Year has led an Australian water company to switch from plastic to aluminum. Hmm, what about switching to nothing and supporting a use-your-own bottle approach? While it is correct that aluminum cans can be 100% made of recycled aluminum, this water company does not seem to appear to make any concerted effort to ensure its can are made of recycled aluminum or to increase the recycling rate for aluminum in Australia towards achieving those of Brazil (92%) or Japan (86%). (Another shocking statistic that could have been added to the 90.5% non-recycled plastic waste [in the World?] is that a water bottle consumes the equivalent of one-fourth of its contents in oil to produce.) Another US water company still promotes water bottles as one of the most effective and inert carbon capture & sequestration methods”..! There is no boundary for green-washing.