**A** new Royal Statistical Society Read Paper featuring Edwin Fong, Chris Holmes, and Steve Walker. Starting from the predictive

rather than from the posterior distribution on the parameter is a fairly novel idea, also pursued by Sonia Petrone and some of her coauthors. It thus adopts a de Finetti’s perspective while adding some substance to the rather metaphysical nature of the original. It however relies on the “existence” of an infinite sample in (1) that assumes a form of underlying model à la von Mises or at least an infinite population. The representation of a parameter θ as a *function* of an infinite sequence comes as a shock first but starts making sense when considering it as a functional of the underlying distribution. Of course, trading (modelling) a random “opaque” parameter θ for (envisioning) an infinite sequence of random (un)observations may sound like a sure loss rather than as a great deal, but it gives substance to the epistemic uncertainty about a distributional parameter, even when a model is assumed, as in Example 1, which defines θ in the usual parametric way (i.e., the mean of the iid variables). Furthermore, the link with bootstrap and even more Bayesian bootstrap becomes clear when θ is seen this way.

Always a fan of minimal loss approaches, but (2.4) defines either a moment or a true parameter value that depends on the parametric family indexed by θ. Hence does not exist outside the primary definition of said parametric family. The following construct of the empirical cdf based on the infinite sequence as providing the θ function is elegant but what is its Bayesian justification? (I did not read Appendix C.2. in full detail but could not spot the prior on F.)

“The resemblance of the martingale posterior to a bootstrap estimator should not have gone unnoticed”

I am always fan of minimal loss approaches, but I wonder at (2.4), as it defines either a moment or a true parameter value that depends on the parametric family indexed by θ. Hence it does not exist outside the primary definition of said parametric family, which limits its appeal. The following construct of the empirical cdf based on the infinite sequence as providing the θ function is elegant and connect with bootstrap, but I wonder at its Bayesian justification. (I did not read Appendix C.2. in full detail but could not spot a prior on F.)

While I completely missed the resemblance, it is indeed the case that, if the predictive at each step is build from the earlier “sample”, the support is not going to evolve. However, this is not particularly exciting as the Bayesian non-parametric estimator is most rudimentary. This seems to bring us back to Rubin (1981) ?! A Dirichlet prior is mentioned with no further detail. And I am getting confused at the complete lack of structure, prior, &tc. It seems to contradict the next section:

“While the prescription of (3.1) remains a subjective task, we find it to be no more subjective than the selection of a likelihood function”

Copulas!!! Again, I am very glad to see copulas involved in the analysis. However, I remain unclear as to why Corollary 1 implies that any sequence of copulas could do the job. Further, why does the Gaussian copula appear as the default choice? What is the computing cost of the update (4.4) after k steps? Similarly (4.7) is using a very special form of copula, with independent-across-dimension increments. I am also missing a guided tour on the implementation, as it sounds explosive in book-keeping and multiplying, while relying on a single hyperparameter in (4.5.2)?

In the illustration section, the use of the galaxy dataset may fail to appeal to Radford Neal, in a spirit similar to Chopin’s & Ridgway’s call to leave the Pima Indians alone, since he delivered a passionate lecture on the inappropriateness of a mixture model for this dataset (at ICMS in 2001). I am unclear as to where the number of modes is extracted from the infinite predictive. What is $\theta$ in this case?

Copulas!!! Although I am unclear why Corollary 1 implies that any sequence of copulas does the job. And why the Gaussian copula appears as the default choice. What is the computing cost of the update (4.4) after k steps? Similarly (4.7) is using a very special form of copula, with independent-across-dimension increments. Missing a guided tour on the implementation, as it sounds explosive in book-keeping and multiplying. A single hyperparameter (4.5.2)?