Archive for Monte Carlo methods

call for sessions and labs at Bay2sC0mp²⁰

Posted in pictures, R, Statistics, Travel, University life with tags , , , , , , , , , , , , , , , , , on February 22, 2019 by xi'an

A call to all potential participants to the incoming BayesComp 2020 conference at the University of Florida in Gainesville, Florida, 7-10 January 2020, to submit proposals [to me] for contributed sessions on everything computational or training labs [to David Rossell] on a specific language or software. The deadline is April 1 and the sessions will be selected by the scientific committee, other proposals being offered the possibility to present the associated research during a poster session [which always is a lively component of the conference]. (Conversely, we reserve the possibility of a “last call” session made from particularly exciting posters on new topics.) Plenary speakers for this conference are

and the first invited sessions are already posted on the webpage of the conference. We dearly hope to attract a wide area of research interests into a as diverse as possible program, so please accept this invitation!!!

independent random sampling methods [book review]

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , , on May 16, 2018 by xi'an

Last week, I had the pleasant surprise to receive a copy of this book in the mail. Book that I was not aware had been written or published (meaning that I was not involved in its review!). The three authors, Luca Martino, David Luengo, and Joaquín Míguez, of Independent Random Sampling Methods are from Madrid universities and I have read (and posted on) several of their papers on (population) Monte Carlo simulation in the recent years. Including Luca’s survey of multiple try MCMC which was helpful in writing our WIREs own survey.

The book is a pedagogical coverage of most algorithms used to simulate independent samples from a given distribution, which of course recoups some of the techniques exposed with more details by [another] Luc, namely Luc Devroye’s Non-uniform random variate generation bible, often mentioned here (and studied in uttermost details by a dedicated reading group in Warwick). It includes a whole chapter on accept-reject methods, with in particular a section on Payne-Dagpunar’s band rejection I had not seen previously. And another entire chapter on ratio-of-uniforms techniques. On which the three authors had proposed generalisations [covered by the book], years before I attempted to go the same way, having completely forgotten reading their paper at the time… Or the much earlier 1991 paper by Jon Wakefield, Alan Gelfand and Adrian Smith!

The book also covers the “vertical density representation”, due to Troutt (1991), which consists in considering the distribution of the density p(.) of the random variable X as a random variable, p(X). I remember pondering about this alternative to the cdf transform and giving up on it as the outcome has a distribution depending on p, even when the density is monotonous. Even though I am not certain from reading the section that this is particularly appealing…

Given its title, the book contains very little about MCMC. Except for a last and final chapter that covers adaptive independent Metropolis-Hastings algorithms, in connection with some of the authors’ recent work. Like multiple try Metropolis. Relating to the (unidimensional) ARMS “ancestor” of adaptive MCMC methods. (As noted in a recent blog on Holden et al., 2009 , I have trouble understanding how recycling only rejected proposed values to build a better proposal distribution is enough to guarantee convergence of an adaptive algorithm, but the book does not delve much into this convergence.)

All in all and with the bias induced by me working in the very area, I find the book quite a nice entry on the topic, which can be used in a Monte Carlo course at both undergraduate and graduate levels if one want to avoid going into Markov chains. It is certainly less likely to scare students away than the comprehensive Non-uniform random variate generation and on the opposite may induce some of them to pursue a research career in this domain.

a conceptual introduction to HMC [reply from the author]

Posted in Statistics with tags , , , , , , , , on September 8, 2017 by xi'an

[Here is the reply on my post from Michael Bétancourt, detailed enough to be promoted from comment to post!]

As Dan notes this is meant as an introduction for those without a strong mathematical background, hence the focus on concepts rather than theorems! There’s plenty of maths deeper in the references. ;-)

 I am not sure I get this sentence. Either it means that an expectation remains invariant under reparameterisation. Or something else and more profound that eludes me. In particular because Michael repeats later (p.25) that the canonical density does not depend on the parameterisation.

What I was trying to get at is that expectations and really all of measure theory are reparameteriztion invariant, but implementations of statistical algorithms that depend on parameterization-dependent representations, namely densities, are not. If your algorithm is sensitive to these parameterization dependencies then you end up with a tuning problem — which parameterization is best? — which makes it harder to utilize the algorithm in practice.

Exact implementations of HMC (i.e. without an integrator) are fully geometric and do not depend on any chosen parameterization, hence the canonical density and more importantly the Hamiltonian being an invariant objects. That said, there are some choices to be made in that construction, and those choices often look like parameter dependencies. See below!

“Every choice of kinetic energy and integration time yields a new Hamiltonian transition that will interact differently with a given target distribution (…) when poorly-chosen, however, the performance can suffer dramatically.”

This is exactly where it’s easy to get confused with what’s invariant and what’s not!

The target density gives rise to a potential energy, and the chosen density over momenta gives rise to a kinetic energy. The two energies transform in opposite ways under a reparameterization so their sum, the Hamiltonian, is invariant.

Really there’s a fully invariant, measure-theoretic construction where you use the target measure directly and add a “cotangent disintegration”.

In practice, however, we often choose a default kinetic energy, i.e. a log density, based on the parameterization of the target parameter space, for example an “identify mass matrix” kinetic energy. In other words, the algorithm itself is invariant but by selecting the algorithmic degrees of freedom based on the parameterization of the target parameter space we induce an implicit parameter dependence.

This all gets more complicated when we introducing the adaptation we use in Stan, which sets the elements of the mass matrix to marginal variances which means that the adapted algorithm is invariant to marginal transformations but not joint ones…

The explanation of the HMC move as a combination of uniform moves along isoclines of fixed energy level and of jumps between energy levels does not seem to translate into practical implementations, at least not as explained in the paper. Simulating directly the energy distribution for a complex target distribution does not seem more feasible than moving up likelihood levels in nested sampling.

Indeed, being able to simulate exactly from the energy distribution, which is equivalent to being able to quantify the density of states in statistical mechanics, is intractable for the same reason that marginal likelihoods are intractable. Which is a shame, because conditioned on those samples HMC could be made embarrassingly parallel!

Instead we draw correlated samples using momenta resamplings between each trajectory. As Dan noted this provides some intuition about Stan (it reduced random walk behavior to one dimension) but also motivates some powerful energy-based diagnostics that immediately indicate when the momentum resampling is limiting performance and we need to improve it by, say, changing the kinetic energy. Or per my previous comment, by keeping the kinetic energy the same but changing the parameterization of the target parameter space. :-)

In the end I cannot but agree with the concluding statement that the geometry of the target distribution holds the key to devising more efficient Monte Carlo methods.

Yes! That’s all I really want statisticians to take away from the paper. :-)

Sobol’s Monte Carlo

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , , , on December 10, 2016 by xi'an

OLYMPUS DIGITAL CAMERA

The name of Ilya Sobol is familiar to researchers in quasi-Monte Carlo methods for his Sobol’s sequences. I was thus surprised to find in my office a small book entitled The Monte Carlo Method by this author, which is a translation of his 1968 book in Russian. I have no idea how it reached my office and I went to check with the library of Paris-Dauphine around the corner [of my corridor] whether it had been lost: apparently, the library got rid of it among a collection of old books… Now, having read through this 67 pages book (or booklet as Sobol puts it) makes me somewhat agree with the librarians, in that there is nothing of major relevance in this short introduction. It is quite interesting to go through the book and see the basics of simulation principles and Monte Carlo techniques unfolding, from the inverse cdf principle [established by a rather convoluted proof] to importance sampling, but the amount of information is about equivalent to the Wikipedia entry on the topic. From an historical perspective, it is also captivating to see the efforts to connect physical random generators (such as those based on vacuum tube noise) to shift-register pseudo-random generators created by Sobol in 1958. On a Soviet Strela computer.

While Googling the title of that book could not provide any connection, I found out that a 1994 version had been published under the title of A Primer for the Monte Carlo Method, which is mostly the same as my version, except for a few additional sections on pseudo-random generation, from the congruential method (with a FORTRAN code) to the accept-reject method being then called von Neumann’s instead of Neyman’s, to the notion of constructive dimension of a simulation technique, which amounts to demarginalisation, to quasi-Monte Carlo [for three pages]. A funny side note is that the author notes in the preface that the first translation [now in my office] was published without his permission!

je reviendrai à Montréal [MCM 2017]

Posted in pictures, R, Running, Statistics, Travel with tags , , , , , , , , , , , , on November 3, 2016 by xi'an

Next summer of 2017, the biennial International Conference on Monte Carlo Methods and Applications (MCM) will take place in Montréal, Québec, Canada, on July 3-7. This is a mathematically-oriented meeting that works in alternance with MCqMC and that is “devoted to the study of stochastic simulation and Monte Carlo methods in general, from the theoretical viewpoint and in terms of their effective applications in different areas such as finance, statistics, machine learning, computer graphics, computational physics, biology, chemistry, and scientific computing in general. It is one of the most prominent conference series devoted to research on the mathematical aspects of stochastic simulation and Monte Carlo methods.” I attended one edition in Annecy three years ago and enjoyed very much the range of topics and backgrounds. The program is under construction and everyone is warmly invited to contribute talks or special sessions, with a deadline on January 20, 2017. In addition, Montréal is a Monte Carlo Mecca of sorts with leading researchers in the field like Luc Devroye and Pierre Lécuyer working there. (And a great place to visit in the summer!)

exam question

Posted in Kids, Statistics, University life with tags , , , , , , , , , on June 24, 2016 by xi'an

exo2A question for my third year statistics exam that I borrowed from Cross Validated: no student even attempted to solve this question…!

And another one borrowed from the highly popular post on the random variable [almost] always smaller than its mean!

simulating correlated random variables [cont’ed]

Posted in Books, Kids, Statistics with tags , , , , on May 28, 2015 by xi'an

zerocorFollowing a recent post on the topic, and comments ‘Og’s readers kindly provided on that post, the picture is not as clear as I wished it was… Indeed, on the one hand, non-parametric measures of correlation based on ranks are, as pointed out by Clara Grazian and others, invariant under monotonic transforms and hence producing a Gaussian pair or a Uniform pair with the intended rank correlation is sufficient to return a correlated sample for any pair of marginal distributions by the (monotonic) inverse cdf transform.  On the other hand, if correlation is understood as Pearson linear correlation, (a) it is not always defined and (b) there does not seem to be a generic approach to simulate from an arbitrary triplet (F,G,ρ) [assuming the three entries are compatible]. When Kees pointed out Pascal van Kooten‘s solution by permutation, I thought this was a terrific resolution, but after thinking about it a wee bit more, I am afraid it is only an approximation, i.e., a way to return a bivariate sample with a given empirical correlation. Not the theoretical correlation. Obviously, when the sample is very large, this comes as a good approximation. But when facing a request to simulate a single pair (X,Y), this gets inefficient [and still approximate].

Now, if we aim at exact simulation from a bivariate distribution with the arbitrary triplet (F,G,ρ), why can’t we find a generic method?! I think one fundamental if obvious reason is that the question is just ill-posed. Indeed, there are many ways of defining a joint distribution with marginals F and G and with (linear) correlation ρ. One for each copula. The joint could thus be associated with a Gaussian copula, i.e., (X,Y)=(F⁻¹(Φ(A)),G⁻¹(Φ(B))) when (A,B) is a standardised bivariate normal with the proper correlation ρ’. Or it can be associated with the Archimedian copula

C(u; v) = (u + v − 1)-1/θ,

with θ>0 defined by a (linear) correlation of ρ. Or yet with any other copula… Were the joint distribution perfectly well-defined, it would then mean that ρ’ or θ (or whatever natural parameter is used for that copula) do perfectly parametrise this distribution instead of the correlation coefficient ρ. All that remains then is to simulate directly from the copula, maybe a theme for a future post…