Archive for Bayesian inference

1500 nuances of gan [gan gan style]

Posted in Books, Statistics, University life with tags , , , , , , , , , , , on February 16, 2018 by xi'an

I recently realised that there is a currently very popular trend in machine learning called GAN [for generative adversarial networks] that strongly connects with ABC, at least in that it relies mostly on the availability of a generative model, i.e., a probability model that can be generated as in x=G(ϵ;θ), to draw inference about θ [or predictions]. For instance, there was a GANs tutorial at NIPS 2016 by Ian Goodfellow and many talks on the topic at recent NIPS, the 1500 in the title referring to the citations of the GAN paper by Goodfellow et al. (2014). (The name adversarial comes from opposing true model to generative model in the inference. )

If you remember Jeffreys‘s famous pique about classical tests as being based on improbable events that did not happen, GAN, like ABC,  is sort of the opposite in that it generates events until the one that was observed happens. More precisely, by generating pseudo-samples and switching parameters θ until these samples get as confused as possible between the data generating (“true”) distribution and the generative one. (In its original incarnation, GAN is indeed an optimisation scheme in θ.) A basic presentation of GAN is that it constructs a function D(x,ϕ) that represents the probability that x came from the true model p versus the generative model, ϕ being the parameter of a neural network trained to this effect, aimed at minimising in ϕ a two-term objective function

E[log D(x,ϕ)]+E[log(1D(G(ϵ;θ),ϕ))]

where the first expectation is taken under the true model and the second one under the generative model.

“The discriminator tries to best distinguish samples away from the generator. The generator tries to produce samples that are indistinguishable by the discriminator.” Edward

One ABC perception of this technique is that the confusion rate

E[log(1D(G(ϵ;θ),ϕ))]

is a form of distance between the data and the generative model. Which expectation can be approximated by repeated simulations from this generative model. Which suggests an extension from the optimisation approach to a ABCyesian version by selecting the smallest distances across a range of θ‘s simulated from the prior.

This notion relates to solution using classification tools as density ratio estimation, connecting for instance to Gutmann and Hyvärinen (2012). And ultimately with Geyer’s 1992 normalising constant estimator.

Another link between ABC and networks also came out during that trip. Proposed by Bishop (1994), mixture density networks (MDN) are mixture representations of the posterior [with component parameters functions of the data] trained on the prior predictive through a neural network. These MDNs can be trained on the ABC learning table [based on a specific if redundant choice of summary statistics] and used as substitutes to the posterior distribution, which brings an interesting alternative to Simon Wood’s synthetic likelihood. In a paper I missed Papamakarios and Murray suggest replacing regular ABC with this version…

JASP, a really really fresh way to do stats

Posted in Statistics with tags , , , , , , on February 1, 2018 by xi'an

Bayesian regression trees [seminar]

Posted in pictures, Statistics, University life with tags , , , , , , , , , , on January 26, 2018 by xi'an
During her visit to Paris, Veronika Rockovà (Chicago Booth) will give a talk in ENSAE-CREST on the Saclay Plateau at 2pm. Here is the abstract
Posterior Concentration for Bayesian Regression Trees and Ensembles
(joint with Stephanie van der Pas)Since their inception in the 1980’s, regression trees have been one of the more widely used non-parametric prediction methods. Tree-structured methods yield a histogram reconstruction of the regression surface, where the bins correspond to terminal nodes of recursive partitioning. Trees are powerful, yet  susceptible to over-fitting.  Strategies against overfitting have traditionally relied on  pruning  greedily grown trees. The Bayesian framework offers an alternative remedy against overfitting through priors. Roughly speaking, a good prior  charges smaller trees where overfitting does not occur. While the consistency of random histograms, trees and their ensembles  has been studied quite extensively, the theoretical understanding of the Bayesian counterparts has  been  missing. In this paper, we take a step towards understanding why/when do Bayesian trees and their ensembles not overfit. To address this question, we study the speed at which the posterior concentrates around the true smooth regression function. We propose a spike-and-tree variant of the popular Bayesian CART prior and establish new theoretical results showing that  regression trees (and their ensembles) (a) are capable of recovering smooth regression surfaces, achieving optimal rates up to a log factor, (b) can adapt to the unknown level of smoothness and (c) can perform effective dimension reduction when p>n. These results  provide a piece of missing theoretical evidence explaining why Bayesian trees (and additive variants thereof) have worked so well in practice.

Better together in Kolkata [slides]

Posted in Books, pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , , , , on January 4, 2018 by xi'an

Here are the slides of the talk on modularisation I am giving today at the PC Mahalanobis 125 Conference in Kolkata, mostly borrowed from Pierre’s talk at O’Bayes 2018 last month:

[which made me realise Slideshare has discontinued the option to update one’s presentation, forcing users to create a new presentation for each update!] Incidentally, the amphitheatre at ISI is located right on top of a geological exhibit room with a reconstituted Barapasaurus tagorei so I will figuratively ride a dinosaur during my talk!

improperties on an astronomical scale

Posted in Books, pictures, Statistics with tags , , , , , , , on December 15, 2017 by xi'an

As pointed out by Peter Coles on his blog, In the Dark, Hyungsuk Tak, Sujit Ghosh, and Justin Ellis just arXived a review of the unsafe use of improper priors in astronomy papers, 24 out of 75 having failed to establish that the corresponding posteriors are well-defined. And they exhibit such an instance (of impropriety) in a MNRAS paper by Pihajoki (2017), which is a complexification of Gelfand et al. (1990), also used by Jim Hobert in his thesis. (Even though the formal argument used to show the impropriety of the posterior in Pihajoki’s paper does not sound right since it considers divergence at a single value of a parameter β.) Besides repeating this warning about an issue that was rather quickly identified in the infancy of MCMC, if not in the very first publications on the Gibbs sampler, the paper seems to argue against using improper priors due to this potential danger, stating that instead proper priors that include all likely values and beyond are to be preferred. Which reminds me of the BUGS feature of using a N(0,10⁹) prior instead of the flat prior, missing the fact that “very large” variances do impact the resulting inference (if only for the issue of model comparison, remember Lindley-Jeffreys!). And are informative in that sense. However, it is obviously a good idea to advise checking for propriety (!) and using such alternatives may come as a safety button, providing a comparison benchmark to spot possible divergences in the resulting inference.

machine learning methods are useful for ABC [or my first PCI Evol Biol!]

Posted in Books, Kids, pictures, Statistics, University life with tags , , , , , , on November 23, 2017 by xi'an

While I am still working on setting a PCI [peer community in] Comput Stats, having secure sponsorship of some societies (ASA, KSS, RSS, SFdS, and hopefully ISBA), my coauthors Jean-Michel Marin and Louis Raynal submitted our paper ABC random forests for Bayesian parameter inference to PCI Evol Biol. And after a few months of review, including a revision accounting for the reviewers’ requests, our paper stood the test and the recommendation by Michael Blum and Dennis Prangle got published there. Great news, and hopefully helpful for our submission within the coming days!

postdocs positions in Uppsala in computational stats for machine learning

Posted in Kids, pictures, Statistics, Travel, University life with tags , , , , , , , , , , , on October 22, 2017 by xi'an

Lawrence Murray sent me a call for two postdoc positions in computational statistics and machine learning. In Uppsala, Sweden. With deadline November 17. Definitely attractive for a fresh PhD! Here are some of the contemplated themes:

(1) Developing efficient Bayesian inference algorithms for large-scale latent variable models in data rich scenarios.

(2) Finding ways of systematically combining different inference techniques, such as variational inference, sequential Monte Carlo, and deep inference networks, resulting in new methodology that can reap the benefits of these different approaches.

(3) Developing efficient black-box inference algorithms specifically targeted at inference in probabilistic programs. This line of research may include implementation of the new methods in the probabilistic programming language Birch, currently under development at the department.