Archive for Bayesian inference

Je reviendrai à Montréal [D-2]

Posted in pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , , , on December 9, 2015 by xi'an

I have spent the day and more completing and compiling slides for my contrapuntal perspective on probabilistic numerics, back in Montréal, for the NIPS 2015 workshop of December 11 on this theme. As I presume the kind  invitation by the organisers was connected with my somewhat critical posts on the topic, I mostly  The day after, while I am flying back to London for the CFE (Computational and Financial Econometrics) workshop, somewhat reluctantly as there will be another NIPS workshop that day on scalable Monte Carlo.

Je veux revoir le long désert
Des rues qui n’en finissent pas
Qui vont jusqu’au bout de l’hiver
Sans qu’il y ait trace de pas

how individualistic should statistics be?

Posted in Books, pictures, Statistics with tags , , , , , , , , , , , on November 5, 2015 by xi'an

keep-stats-subjectiveKeli Liu and Xiao-Li Meng completed a paper on the very nature of inference, to appear in The Annual Review of Statistics and Its Application. This paper or chapter is addressing a fundamental (and foundational) question on drawing inference based a sample on a new observation. That is, in making prediction. To what extent should the characteristics of the sample used for that prediction resemble those of the future observation? In his 1921 book, A Treatise on Probability, Keynes thought this similarity (or individualisation) should be pushed to its extreme, which led him to somewhat conclude on the impossibility of statistics and never to return to the field again. Certainly missing the incoming possibility of comparing models and selecting variables. And not building so much on the “all models are wrong” tenet. On the contrary, classical statistics use the entire data available and the associated model to run the prediction, including Bayesian statistics, although it is less clear how to distinguish between data and control there. Liu & Meng debate about the possibility of creating controls from the data alone. Or “alone” as the model behind always plays a capital role.

“Bayes and Frequentism are two ends of the same spectrum—a spectrum defined in terms of relevance and robustness. The nominal contrast between them (…) is a red herring.”

viemortrerbThe paper makes for an exhilarating if definitely challenging read. With a highly witty writing style. If only because the perspective is unusual, to say the least!, and requires constant mental contortions to frame the assertions into more traditional terms.  For instance, I first thought that Bayesian procedures were in agreement with the ultimate conditioning approach, since it conditions on the observables and nothing else (except for the model!). Upon reflection, I am not so convinced that there is such a difference with the frequentist approach in the (specific) sense that they both take advantage of the entire dataset. Either from the predictive or from the plug-in distribution. It all boils down to how one defines “control”.

“Probability and randomness, so tightly yoked in our minds, are in fact distinct concepts (…) at the end of the day, probability is essentially a tool for bookkeeping, just like the abacus.”

Some sentences from the paper made me think of ABC, even though I am not trying to bring everything back to ABC!, as drawing controls is the nature of the ABC game. ABC draws samples or control from the prior predictive and only keeps those for which the relevant aspects (or the summary statistics) agree with those of the observed data. Which opens similar questions about the validity and precision of the resulting inference, as well as the loss of information due to the projection over the summary statistics. While ABC is not mentioned in the paper, it can be used as a benchmark to walk through it.

“In the words of Jack Kiefer, we need to distinguish those problems with `luck data’ from those with `unlucky data’.”

keep-calm-and-condi-tionI liked very much recalling discussions we had with George Casella and Costas Goutis in Cornell about frequentist conditional inference, with the memory of Jack Kiefer still lingering around. However, I am not so excited about the processing of models here since, from what I understand in the paper (!), the probabilistic model behind the statistical analysis must be used to some extent in producing the control case and thus cannot be truly assessed with a critical eye. For instance, of which use is the mean square error when the model behind is unable to produce the observed data? In particular, the variability of this mean squared error is directly driven by this model. Similarly the notion of ancillaries is completely model-dependent. In the classification diagrams opposing robustness to relevance, all methods included therein are parametric. While non-parametric types of inference could provide a reference or a calibration ruler, at the very least.

Also, by continuously and maybe a wee bit heavily referring to the doctor-and-patient analogy, the paper is somewhat confusing as to which parts are analogy and which parts are methodology and to which type of statistical problem is covered by the discussion (sometimes it feels like all problems and sometimes like medical trials).

“The need to deliver individualized assessments of uncertainty are more pressing than ever.”

 A final question leads us to an infinite regress: if the statistician needs to turn to individualized inference, at which level of individuality should the statistician be assessed? And who is going to provide the controls then? In any case, this challenging paper is definitely worth reading by (only mature?) statisticians to ponder about the nature of the game!

Tractable Fully Bayesian inference via convex optimization and optimal transport theory

Posted in Books, Statistics, University life with tags , , , , , , , , on October 6, 2015 by xi'an

IMG_0294“Recently, El Moselhy et al. proposed a method to construct a map that pushed forward the prior measure to the posterior measure, casting Bayesian inference as an optimal transport problem. Namely, the constructed map transforms a random variable distributed according to the prior into another random variable distributed according to the posterior. This approach is conceptually different from previous methods, including sampling and approximation methods.”

Yesterday, Kim et al. arXived a paper with the above title, linking transport theory with Bayesian inference. Rather strangely, they motivate the transport theory with Galton’s quincunx, when the apparatus is a discrete version of the inverse cdf transform… Of course, in higher dimensions, there is no longer a straightforward transform and the paper shows (or recalls) that there exists a unique solution with positive Jacobian for log-concave posteriors. For instance, log-concave priors and likelihoods. This solution remains however a virtual notion in practice and an approximation is constructed via a (finite) functional polynomial basis. And minimising an empirical version of the Kullback-Leibler distance.

I am somewhat uncertain as to how and why apply such a transform to simulations from the prior (which thus has to be proper). Producing simulations from the posterior certainly is a traditional way to approximate Bayesian inference and this is thus one approach to this simulation. However, the discussion of the advantage of this approach over, say, MCMC, is quite limited. There is no comparison with alternative simulation or non-simulation methods and the computing time for the transport function derivation. And on the impact of the dimension of the parameter space on the computing time. In connection with recent discussions on probabilistic numerics and super-optimal convergence rates, Given that it relies on simulations, I doubt optimal transport can do better than O(√n) rates. One side remark about deriving posterior credible regions from (HPD)  prior credible regions: there is no reason the resulting region is optimal in volume (HPD) given that the transform is non-linear.

Je reviendrai à Montréal [NIPS 2015]

Posted in pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , , , on September 30, 2015 by xi'an

I will be back in Montréal, as the song by Robert Charlebois goes, for the NIPS 2015 meeting there, more precisely for the workshops of December 11 and 12, 2015, on probabilistic numerics and ABC [à Montréal]. I was invited to give the first talk by the organisers of the NIPS workshop on probabilistic numerics, presumably to present a contrapuntal perspective on this mix of Bayesian inference with numerical issues, following my somewhat critical posts on the topic. And I also plan to attend some lectures in the (second) NIPS workshop on ABC methods. Which does not leave much free space for yet another workshop on Approximate Bayesian Inference! The day after, while I am flying back to London, there will be a workshop on scalable Monte Carlo. All workshops are calling for contributed papers to be presented during central poster sessions. To be submitted to and to and to aabi2015. Before October 16.

Funny enough, I got a joking email from Brad, bemoaning my traitorous participation to the workshop on probabilistic numerics because of its “anti-MCMC” agenda, reflected in the summary:

“Integration is the central numerical operation required for Bayesian machine learning (in the form of marginalization and conditioning). Sampling algorithms still abound in this area, although it has long been known that Monte Carlo methods are fundamentally sub-optimal. The challenges for the development of better performing integration methods are mostly algorithmic. Moreover, recent algorithms have begun to outperform MCMC and its siblings, in wall-clock time, on realistic problems from machine learning.

The workshop will review the existing, by now quite strong, theoretical case against the use of random numbers for integration, discuss recent algorithmic developments, relationships between conceptual approaches, and highlight central research challenges going forward.”

Position that I hope to water down in my talk! In any case,

Je veux revoir le long désert
Des rues qui n’en finissent pas
Qui vont jusqu’au bout de l’hiver
Sans qu’il y ait trace de pas

scaling the Gibbs posterior credible regions

Posted in Books, Statistics, University life with tags , , , , , , , on September 11, 2015 by xi'an

“The challenge in implementation of the Gibbs posterior is that it depends on an unspecified scale (or inverse temperature) parameter.”

A new paper by Nick Syring and Ryan Martin was arXived today on the same topic as the one I discussed last January. The setting is the same as with empirical likelihood, namely that the distribution of the data is not specified, while parameters of interest are defined via moments or, more generally, a minimising a loss function. A pseudo-likelihood can then be constructed as a substitute to the likelihood, in the spirit of Bissiri et al. (2013). It is called a “Gibbs posterior” distribution in this paper. So the “Gibbs” in the title has no link with the “Gibbs” in Gibbs sampler, since inference is conducted with respect to this pseudo-posterior. Somewhat logically (!), as n grows to infinity, the pseudo- posterior concentrates upon the pseudo-true value of θ minimising the expected loss, hence asymptotically resembles to the M-estimator associated with this criterion. As I pointed out in the discussion of Bissiri et al. (2013), one major hurdle when turning a loss into a log-likelihood is that it is at best defined up to a scale factor ω. The authors choose ω so that the Gibbs posterior

\exp\{-\omega n l_n(\theta,x) \}\pi(\theta)

is well-calibrated. Where ln is the empirical averaged loss. So the Gibbs posterior is part of the matching prior collection. In practice the authors calibrate ω by a stochastic optimisation iterative process, with bootstrap on the side to evaluate coverage. They briefly consider empirical likelihood as an alternative, on a median regression example, where they show that their “Gibbs confidence intervals (…) are clearly the best” (p.12). Apart from the relevance of being “well-calibrated”, and the asymptotic nature of the results. and the dependence on the parameterisation via the loss function, one may also question the possibility of using this approach in large dimensional cases where all of or none of the parameters are of interest.

Bureau international des poids et mesures [bayésiennes?]

Posted in pictures, Statistics, Travel with tags , , , , , , , , , , , , , on June 19, 2015 by xi'an

The workshop at the BIPM on measurement uncertainty was certainly most exciting, first by its location in the Parc de Saint Cloud in classical buildings overlooking the Seine river in a most bucolic manner…and second by its mostly Bayesian flavour. The recommendations that the workshop addressed are about revisions in the current GUM, which stands for the Guide to the Expression of Uncertainty in Measurement. The discussion centred on using a more Bayesian approach than in the earlier version, with the organisers of the workshop and leaders of the revision apparently most in favour of that move. “Knowledge-based pdfs” came into the discussion as an attractive notion since it rings a Bayesian bell, especially when associated with probability as a degree of belief and incorporating the notion of an a priori probability distribution. And propagation of errors. Or even more when mentioning the removal of frequentist validations. What I gathered from the talks is the perspective drifting away from central limit approximations to more realistic representations, calling for Monte Carlo computations. There is also a lot I did not get about conventions, codes and standards. Including a short debate about the different meanings on Monte Carlo, from simulation technique to calculation method (as for confidence intervals). And another discussion about replacing the old formula for estimating sd from the Normal to the Student’s t case. A change that remains highly debatable since the Student’s t assumption is as shaky as the Normal one. What became clear [to me] during the meeting is that a rather heated debate is currently taking place about the need for a revision, with some members of the six (?) organisations involved arguing against Bayesian or linearisation tools.

This became even clearer during our frequentist versus Bayesian session with a first talk so outrageously anti-Bayesian it was hilarious! Among other things, the notion that “fixing” the data was against the principles of physics (the speaker was a physicist), that the only randomness in a Bayesian coin tossing was coming from the prior, that the likelihood function was a subjective construct, that the definition of the posterior density was a generalisation of Bayes’ theorem [generalisation found in… Bayes’ 1763 paper then!], that objective Bayes methods were inconsistent [because Jeffreys’ prior produces an inadmissible estimator of μ²!], that the move to Bayesian principles in GUM would cost the New Zealand economy 5 billion dollars [hopefully a frequentist estimate!], &tc., &tc. The second pro-frequentist speaker was by comparison much much more reasonable, although he insisted on showing Bayesian credible intervals do not achieve a nominal frequentist coverage, using a sort of fiducial argument distinguishing x=X+ε from X=x+ε that I missed… A lack of achievement that is fine by my standards. Indeed, a frequentist confidence interval provides a coverage guarantee either for a fixed parameter (in which case the Bayesian approach achieves better coverage by constant updating) or a varying parameter (in which case the frequency of proper inclusion is of no real interest!). The first Bayesian speaker was Tony O’Hagan, who summarily shred the first talk to shreds. And also criticised GUM2 for using reference priors and maxent priors. I am afraid my talk was a bit too exploratory for the audience (since I got absolutely no question!) In retrospect, I should have given an into to reference priors.

An interesting specificity of a workshop on metrology and measurement is that they are hard stickers to schedule, starting and finishing right on time. When a talk finished early, we waited until the intended time to the next talk. Not even allowing for extra discussion. When the only overtime and Belgian speaker ran close to 10 minutes late, I was afraid he would (deservedly) get lynched! He escaped unscathed, but may (and should) not get invited again..!

Bayesian programming [book review]

Posted in Books, Kids, pictures, Statistics, University life with tags , , , , , , , , , , on March 3, 2014 by xi'an

“We now think the Bayesian Programming methodology and tools are reaching maturity. The goal of this book is to present them so that anyone is able to use them. We will, of course, continue to improve tools and develop new models. However, pursuing the idea that probability is an alternative to Boolean logic, we now have a new important research objective, which is to design specific hsrdware, inspired from biology, to build a Bayesian computer.”(p.xviii)

On the plane to and from Montpellier, I took an extended look at Bayesian Programming a CRC Press book recently written by Pierre Bessière, Emmanuel Mazer, Juan-Manuel Ahuactzin, and Kamel Mekhnacha. (Very nice picture of a fishing net on the cover, by the way!) Despite the initial excitement at seeing a book which final goal was to achieve a Bayesian computer, as demonstrated by the above quote, I however soon found the book too arid to read due to its highly formalised presentation… The contents are clear indications that the approach is useful as they illustrate the use of Bayesian programming in different decision-making settings, including a collection of Python codes, so it brings an answer to the what but it somehow misses the how in that the construction of the priors and the derivation of the posteriors is not explained in a way one could replicate.

“A modeling methodology is not sufficient to run Bayesian programs. We also require an efficient Bayesian inference engine to automate the probabilistic calculus. This assumes we have a collection of inference algorithms adapted and tuned to more or less specific models and a software architecture to combine them in a coherent and unique tool.” (p.9)

For instance, all models therein are described via the curly brace formalism summarised by

phdthesis28xwhich quickly turns into an unpalatable object, as in this example taken from the online PhD thesis of Gabriel Synnaeve (where he applied Bayesian programming principles to a MMORPG called StarCraft and developed an AI (or bot) able to play BroodwarBotQ)

phdthesis37xthesis that I found most interesting!

“Consequently, we have 21 × 16 = 336 bell-shaped distributions and we have 2 × 21 × 16 = 772 free parameters: 336 means and 336 standard deviations.¨(p.51)

Now, getting back to the topic of the book, I can see connections with statistical problems and models, and not only via the application of Bayes’ theorem, when the purpose (or Question) is to take a decision, for instance in a robotic action. I still remain puzzled by the purpose of the book, since it starts with very low expectations on the reader, but hurries past notions like Kalman filters and Metropolis-Hastings algorithms in a few paragraphs. I do not get some of the details, like this notion of a discretised Gaussian distribution (I eventually found the place where the 772 prior parameters are “learned” in a phase called “identification”.)

“Thanks to conditional independence the curse of dimensionality has been broken! What has been shown to be true here for the required memory space is also true for the complexity of inferences. Conditional independence is the principal tool to keep the calculation tractable. Tractability of Bayesian inference computation is of course a major concern as it has been proved NP-hard (Cooper, 1990).”(p.74)

The final chapters (Chap. 14 on “Bayesian inference algorithms revisited”, Chap. 15 on “Bayesian learning revisited” and  Chap. 16 on “Frequently asked questions and frequently argued matters” [!]) are definitely those I found easiest to read and relate to. With mentions made of conjugate priors and of the EM algorithm as a (Bayes) classifier. The final chapter mentions BUGS, Hugin and… Stan! Plus a sequence of 23 PhD theses defended on Bayesian programming for robotics in the past 20 years. And explains the authors’ views on the difference between Bayesian programming and Bayesian networks (“any Bayesian network can be represented in the Bayesian programming formalism, but the opposite is not true”, p.316), between Bayesian programming and probabilistic programming (“we do not search to extend classical languages but rather to replace them by a new programming approach based on probability”, p.319), between Bayesian programming and Bayesian modelling (“Bayesian programming goes one step further”, p.317), with a further (self-)justification of why the book sticks to discrete variables, and further more philosophical sections referring to Jaynes and the principle of maximum entropy.

“The “objectivity” of the subjectivist approach then lies in the fact that two different subjects with same preliminary knowledge and same observations will inevitably reach the same conclusions.”(p.327)

Bayesian Programming thus provides a good snapshot of (or window on) what one can achieve in uncertain environment decision-making with Bayesian techniques. It shows a long-term reflection on those notions by Pierre Bessière, his colleagues and students. The topic is most likely too remote from my own interests for the above review to be complete. Therefore, if anyone is interested in reviewing any further this book for CHANCE, before I send the above to the journal, please contact me. (Usual provisions apply.)


Get every new post delivered to your Inbox.

Join 981 other followers