**A**fter a rather extended shelf-life, our paper *expectation propagation as a way of life: a framework for Bayesian inference on partitioned data *which was started when Andrew visited Paris in… 2014!, and to which I only marginally contributed, has now appeared in JMLR! Which happens to be my very first paper in this journal.

## Archive for Bayesian inference

## Expectation Propagation as a Way of Life on-line

Posted in pictures, Statistics, University life with tags Andrew Gelman, Bayesian computation, Bayesian inference, big data, distributed Bayesian inference, Edward Hopper, expectation-propagation, gas, gas station, JMLR, Journal of Machine-Learning, New York, The Museum of Modern Art, way of life on March 18, 2020 by xi'an## Judith’s colloquium at Warwick

Posted in Statistics with tags Bayesian inference, Bayesian nonparametrics, Bayesian tests of hypotheses, colloquium, Hawkes processes, Judith Rousseau, seminar, University of Oxford, University of Warwick on February 21, 2020 by xi'an## statistical inference and uncertainty quantification for complex process-based models using multiple data sets [postdoc in Warwick]

Posted in pictures, Statistics, Travel, University life with tags ABC, Bayesian inference, particle MCMC, postdoctoral position, sent to Coventry, UK landscape, UKRI, University of Warwick, Warwickshire on February 13, 2020 by xi'anApplications are invited for a postdoctoral research fellow position to work on the project “Statistical inference and uncertainty quantification for complex process-based models using multiple data sets”.

The position is part of a project to develop, implement and apply methods for parameter inference of models of environmental processes: particularly approaches based on approximate Bayesian computation (ABC) and particle MCMC.

The project is funded through the UKRI Strategic Priorities Fund programme on “Landscape Decisions: Towards a new framework for using land assets”. This programme will address the challenge of delivering better, evidence-based decisions within UK landscapes through research collaboration with policy, business and land management partners to deliver an interdisciplinary decision-making framework to inform how land is used. The post holder will become part of the world-renowned Department of Statistics at the University of Warwick.

Informal enquires can be addressed to Dr Richard Everitt, with closing date 8 March 2020.

## Bayesian inference with no likelihood

Posted in Books, Statistics, University life with tags Bayesian GANs, Bayesian inference, Bayesian robustness, change-point, congestion tax, conjugate priors, likelihood-free methods, thesis defence, University of Warwick on January 28, 2020 by xi'an**T**his week I made a quick trip to Warwick for the defence (or viva) of the PhD thesis of Jack Jewson, containing novel perspectives on constructing Bayesian inference without likelihood or without complete trust in said likelihood. The thesis aimed at constructing minimum divergence posteriors in an M-open perspective and built a rather coherent framework from principles to implementation. There is a clear link with the earlier work of Bissiri et al. (2016), with further consistency constraints where the outcome must recover the true posterior in the M-closed scenario (if not always the case with the procedures proposed in the thesis).

Although I am partial to the use of empirical likelihoods in setting, I appreciated the position of the thesis and the discussion of the various divergences towards the posterior derivation (already discussed on this blog) , with interesting perspectives on the calibration of the pseudo-posterior à la Bissiri et al. (2016). Among other things, the thesis pointed out a departure from the likelihood principle and some of its most established consequences, like Bayesian additivity. In that regard, there were connections with generative adversarial networks (GANs) and their Bayesian versions that could have been explored. And an impression that the type of Bayesian robustness explored in the thesis has more to do with outliers than with misspecification. Epsilon-contamination amodels re quite specific as it happens, in terms of tails and other things.

The next chapter is somewhat “less” Bayesian in my view as it considers a generalised form of variational inference. I agree that the view of the posterior as a solution to an optimisation is tempting but changing the objective function makes the notion less precise. Which makes reading it somewhat delicate as it seems to dilute the meaning of both prior and posterior to the point of becoming irrelevant.

The last chapter on change-point models is quite alluring in that it capitalises on the previous developments to analyse a fairly realistic if traditional problem, applied to traffic in London, prior and posterior to the congestion tax. However, there is always an issue with robustness and outliers in that the notion is somewhat vague or informal. Things start clarifying at the end but I find surprising that conjugates are robust optimal solutions since the usual folk theorem from the 80’s is that they are not robust.

## from here to infinity

Posted in Books, Statistics, Travel with tags Bayesian inference, classification, Clermont-Ferrand, clustering, Dirichlet process mixture, From Here to Infinity, hyperparameter, Ian Stewart, label switching, mixtures of distributions, prior distributions, sparse finite mixtures, University of Warwick, Vienna on September 30, 2019 by xi'an

“Introducing a sparsity prior avoids overfitting the number of clusters not only for finite mixtures, but also (somewhat unexpectedly) for Dirichlet process mixtures which are known to overfit the number of clusters.”

**O**n my way back from Clermont-Ferrand, in an old train that reminded me of my previous ride on that line that took place in… 1975!, I read a fairly interesting paper published in Advances in Data Analysis and Classification by [my Viennese friends] Sylvia Früwirth-Schnatter and Gertrud Malsiner-Walli, where they describe how sparse finite mixtures and Dirichlet process mixtures can achieve similar results when clustering a given dataset. Provided the hyperparameters in both approaches are calibrated accordingly. In both cases these hyperparameters (scale of the Dirichlet process mixture versus scale of the Dirichlet prior on the weights) are endowed with Gamma priors, both depending on the number of components in the finite mixture. Another interesting feature of the paper is to witness how close the related MCMC algorithms are when exploiting the stick-breaking representation of the Dirichlet process mixture. With a resolution of the label switching difficulties via a point process representation and k-mean clustering in the parameter space. *[The title of the paper is inspired from Ian Stewart’s book.]*

## my likelihood is dominating my prior [not!]

Posted in Kids, Statistics with tags Bayesian inference, cross validated, likelihood function, Likelihood Principle, magnitude, scaling on August 29, 2019 by xi'an**A**n interesting misconception read on X validated today, with a confusion between the absolute value of the likelihood function and its variability. Which I have trouble explaining except possibly by the extrapolation from the discrete case and a confusion between the probability density of the data [scaled as a probability] and the likelihood function [scale-less]. I also had trouble convincing the originator of the question of the irrelevance of the scale of the likelihood *per se*, even when demonstrating that |𝚺| could vanish from the posterior with no consequence whatsoever. It is only when I thought of the case when the likelihood is constant in 𝜃 that I managed to make my case.

## O’Bayes 19/2

Posted in Books, pictures, Running, Travel, University life with tags amenability, Bayesian inference, bronze sculpture, Carleton University, ergodicity, Gibbs posterior, group invariance, John von Neumann, Kenilworth, likelihood-free methods, O'Bayes 2019, Ottawa, Read paper, Royal Statistical Society, summer of British conferences, sunrise, University of Warwick, Zig-Zag on July 1, 2019 by xi'an**O**ne talk on Day 2 of O’Bayes 2019 was by Ryan Martin on data dependent priors (or “priors”). Which I have already discussed in this blog. Including the notion of a Gibbs posterior about quantities that “are not always defined through a model” [which is debatable if one sees it like part of a semi-parametric model]. Gibbs posterior that is built through a pseudo-likelihood constructed from the empirical risk, which reminds me of Bissiri, Holmes and Walker. Although requiring a prior on this quantity that is not part of a model. And is not necessarily a true posterior and not necessarily with the same concentration rate as a true posterior. Constructing a data-dependent distribution on the parameter does not necessarily mean an interesting inference and to keep up with the theme of the conference has no automated claim to [more] “objectivity”.

And after calling a prior both Beauty and The Beast!, Erlis Ruli argued about a “bias-reduction” prior where the prior is solution to a differential equation related with some cumulants, connected with an earlier work of David Firth (Warwick). An interesting conundrum is how to create an MCMC algorithm when the prior is that intractable, with a possible help from PDMP techniques like the Zig-Zag sampler.

While Peter Orbanz’ talk was centred on a central limit theorem under group invariance, further penalised by being the last of the (sun) day, Peter did a magnificent job of presenting the result and motivating each term. It reminded me of the work Jim Bondar was doing in Ottawa in the 1980’s on Haar measures for Bayesian inference. Including the notion of *amenability* [a term due to von Neumann] I had not met since then. (Neither have I met Jim since the last summer I spent in Carleton.) The CLT and associated LLN are remarkable in that the average is not over observations but over shifts of the same observation under elements of a sub-group of transformations. I wondered as well at the potential connection with the Read Paper of Kong et al. in 2003 on the use of group averaging for Monte Carlo integration [connection apart from the fact that both discussants, Michael Evans and myself, are present at this conference].