Archive for Metropolis-Hastings algorithm

transformation MCMC

Posted in Books, pictures, Statistics, Travel, University life with tags , , , , , , , on January 3, 2022 by xi'an

For reasons too long to describe here, I recently came across a 2013 paper by Dutta and Bhattacharya (from ISI Kolkata) entitled MCMC based on deterministic transforms, which sounded a bit dubious until I realised the deterministic label apply to the choice of the transformation and not to the Metropolis-Hastings proposal… The core of the proposed method is to make a proposal that simultaneously considers a move and its inverse, namely from x to either x’=T(x,ε) or x”=T⁻¹(x,ε) , where ε is an independent random noise, possibly degenerated to a manifold of lesser dimension. Due to the symmetry the acceptance probability is then a ratio of the target, multiplied by the x-Jacobian of T (as in reversible jump). I tried the method on a mixture of Gamma distributions target (in red) with an Exponential scale change and the resulting sample indeed fitted said target.

The authors even make an argument in favour of a unidimensional noise, although this amounts to running an implicit Gibbs sampler. Argument based on a reduced simulation cost for ε, albeit the full dimensional transform x’=T(x,ε) still requires to be computed. And as noted in the paper this also requires checking for irreducibility. The claim for higher efficiency found therein is thus mostly unsubstantiated…

“The detailed balance requirement also demands that, given x, the regions covered by the forward and the backward transformations are disjoint.”

The above statement is also surprising in that the generic detailed balance condition does not impose such a restriction.

 

Blackwell-Rosenbluth Awards 2021

Posted in Statistics, University life with tags , , , , , , , , , , , on November 1, 2021 by xi'an

Congratulations to the winners of the newly created award! This j-ISBA award is intended for junior researchers in different areas of Bayesian statistics. And named after David Blackwell and Arianna  Rosenbluth. They will present their work at the newly created JB³ seminars on 10 and 12 November, both at 1pm UTC. (The awards are broken into two time zones, corresponding to the Americas and the rest of the World.)

UTC+0 to UTC+13

Marta Catalano, Warwick University
Samuel Livingstone, University College London
Dootika Vats, Indian Institute of Technology Kanpur

UTC-12 to UTC-1

Trevor Campbell, University of British Columbia
Daniel Kowal, Rice University
Yixin Wang, University of Michigan

scale matters [maths as well]

Posted in pictures, R, Statistics with tags , , , , , , , , on June 2, 2021 by xi'an

A question from X validated on why an independent Metropolis sampler of a three component Normal mixture based on a single Normal proposal was failing to recover the said mixture…

When looking at the OP’s R code, I did not notice anything amiss at first glance (I was about to drive back from Annecy, hence did not look too closely) and reran the attached code with a larger variance in the proposal, which returned the above picture for the MCMC sample, close enough (?) to the target. Later, from home, I checked the code further and noticed that the Metropolis ratio was only using the ratio of the targets. Dividing by the ratio of the proposals made a significant (?) to the representation of the target.

More interestingly, the OP was fundamentally confused between independent and random-walk Rosenbluth algorithms, from using the wrong ratio to aiming at the wrong scale factor and average acceptance ratio, and furthermore challenged by the very notion of Hessian matrix, which is often suggested as a default scale.

Metropolis-Hastings via Classification [One World ABC seminar]

Posted in Statistics, University life with tags , , , , , , , , , , , , , , , on May 27, 2021 by xi'an

Today, Veronika Rockova is giving a webinar on her paper with Tetsuya Kaji Metropolis-Hastings via classification. at the One World ABC seminar, at 11.30am UK time. (Which was also presented at the Oxford Stats seminar last Feb.) Please register if not already a member of the 1W ABC mailing list.

unbalanced sampling

Posted in pictures, R, Statistics with tags , , , , , , , on May 17, 2021 by xi'an


A question from X validated on sampling from an unknown density f when given both a sample from the density f restricted to a (known) interval A , say, and a sample from f restricted to the complement of A, say. Or at least on producing an estimate of the mass of A under f, p(A)

The problem sounds impossible to solve without an ability to compute the density value at a given value, since  any convex combination αf¹+(1-α)f² would return the same two samples. Assuming continuity of the density f at the boundary point a between A and its complement, a desperate solution for p(A)/1-p(A) is to take the ratio of the density estimates at the value a, which turns out not so poor an approximation if seemingly biased. This was surprising to me as kernel density estimates are notoriously bad at boundary points.

If f(x) can be computed [up to a constant] at an arbitrary x, it is obviously feasible to simulate from f and approximate p(A). But the problem is then moot as a resolution would not even need the initial samples. If exploiting those to construct a single kernel density estimate, this estimate can be used as a proposal in an MCMC algorithm. Surprisingly (?), using instead the empirical cdf as proposal does not work.

%d bloggers like this: