Archive for random walk

splitting a field by annealing

Posted in Kids, pictures, R, Statistics with tags , , , , , , , , on October 18, 2017 by xi'an

A recent riddle [from The Riddle] that I pondered about during a [long!] drive to Luxembourg last weekend was about splitting a square field into three lots of identical surface for a minimal length of separating wire… While this led me to conclude that the best solution was a T like separation, I ran a simulated annealing R code on my train trip to AutransValence, seemingly in agreement with this conclusion.I discretised the square into n² units and explored configurations by switching two units with different colours, according to a simulated annealing pattern (although unable to impose connectivity on the three regions!):

#counting adjacent units of same colour 
for (v in 1:n2) hood[v]=bourz(v,partz)
for (t in 1:T){
  colz=sample(1:3,2) #picks colours
#collection of squares impacted by switch 
  for (v in voiz) nood[v]=bourz(v,partt) 
  if (nood[a]*nood[b]>0){
    if (log(runif(1))<difz^3/(n^3)*(1+log(10*rep*t)^3)){
      if (el<minz){ minz=el;cool=partz}

(where bourz computes the number of neighbours), which produces completely random patterns at high temperatures (low t) and which returns to the T configuration (more or less):if not always, as shown below:Once the (a?) solution was posted on The Riddler, it appeared that one triangular (Y) version proved better than the T one [if not started from corners], with a gain of 3% and that a curved separation was even better with an extra gain less than 1% [solution that I find quite surprising as straight lines should improve upon curved ones…]

Monte Carlo calculations of the radial distribution functions for a proton-electron plasma

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , on October 11, 2017 by xi'an

“In conclusion, the Monte Carlo method of calculating radial distribution functions in a plasma is a feasible approach if significant computing time is available (…) The results indicate that at least 10000 iterations must be completed before the system can be considered near to its equilibrium state, and for a badly chosen starting configuration, the run would need to be considerably longer (…) for more conclusive results a longer run is needed so that the energy of the system can settle into an equilibrium pattern and steady-state radial distribution functions can be obtained.” A.A. Barker

Looking for the history behind Barker’s formula the other day made me look for the original 1965 paper. Which got published in the Australian Journal of Physics at the beginning of Barker’s PhD at the University of Adelaide.

As shown in the above screenshot, the basis  of Barker’s algorithm is indeed Barker’s acceptance probability, albeit written in a somewhat confusing way since the current value of the chain is kept if a Uniform variate is smaller than what is actually the rejection probability. No mistake there! And more interestingly, Barker refers to Wood and Parker (1957) for the “complete and rigorous theory” behind the method. (Both Wood and Parker being affiliated with Los Alamos Scientific Laboratory, while Barker acknowledges support from both the Australian Institute of Nuclear Science and Engineering and the Weapons Research Establishment, Salisbury… This were times when nuclear weapon research was driving MCMC. Hopefully we will not come back to such times. Or, on the pessimistic side, we will not have time to come back to such times!)

As in Metropolis et al. (1953), the analysis is made on a discretised (finite) space, building the Markov transition matrix, stating the detailed balance equation (called microscopic reversibility). Interestingly, while Barker acknowledges that there are other ways of assigning the transition probability, his is the “most rapid” in terms of mixing. And equally interestingly, he discusses the scale of the random walk in the [not-yet-called] Metropolis-within-Gibbs move as major, targetting 0.5 as the right acceptance rate, and suggesting to adapt this scale on the go. There is also a side issue that is apparently not processed with all due rigour, namely the fact that the particles in the system cannot get arbitrarily close from one another. It is unclear how a proposal falling below this distance is processed by Barker’s algorithm. When implemented on 32 particles, this algorithm took five hours to execute 6100 iterations. With a plot of the target energy function that does not shout convergence, far from it! As acknowledged by Barker himself (p.131).

The above quote is from the conclusion and its acceptance of the need for increased computing times comes as a sharp contrast with this week when one of our papers was rejected based on this very feature..!

Le Monde puzzle [#1024]

Posted in Books, Kids with tags , , , , , , , on October 10, 2017 by xi'an

The penultimate and appropriately somewhat Monty Hallesque Le Monde mathematical puzzle of the competition!

A dresser with 5×5 drawers contains a single object in one of the 25 drawers. A player opens a drawer at random and, after each choice, the object moves at random to a drawer adjacent to its current location and the drawer chosen by the player remains open. What is the maximum number of drawers one need to open to find the object?

In a dresser with 9 drawers in a line, containing again a single object, the player opens drawers one at a time, after which the open drawer is closed and the object moves to one of the drawers adjacent to its current location. What is the maximum number of drawers one need to open to find the object?

For the first question, setting a pattern of exploration and, given this pattern, simulating a random walk trying to avoid the said pattern as long as possible is feasible, returning a maximum number of steps over many random walks [and hence a lower bound on the true maximum]. As in the following code

  while (!nomove){
   if (t==m){ nomove=TRUE}else{
   if ((t-1)%%5>0) muv=c(muv,t-1)
   if (t%%5>0) muv=c(muv,t+1)
   if ((t-1)%/%5>0) muv=c(muv,t-5)
   if (t%/%5<4) muv=c(muv,t+5)
   if (!nomove) t=sample(rep(muv,2),1)}

But a direct reasoning starts from the observation that, while two adjacent drawers are not opened, a random walk can, with non-zero probability, switch indefinitely between both drawers. Hence, a sure recovery of the object requires opening one drawer out of two. The minimal number of drawers to open on a 5×5 dresser is 2+3+2+3+2=12. Since in 12 steps, those drawers are all open, spotting the object may require up to 13 steps.

For the second case, unless I [again!] misread the question, whatever pattern one picks for the exploration, there is always a non-zero probability to avoid discovery after an arbitrary number of steps. The [wrong!] answer is thus infinity. To cross-check this reasoning, I wrote the following R code that mimics a random pattern of exploration, associated by an opportunistic random walk that avoids discovery whenever possible (even with very low probability) bu pushing the object towards the centre,

  while (!nomove){
    if (!nomove) t=sample(rep(muv,2),1,

which returns unlimited values on repeated runs. However, I was wrong and the R code unable to dismiss my a priori!, as later discussions with Robin and Julien at Paris-Dauphine exhibited ways of terminating the random walk in 18, then 15, then 14 steps! The idea was to push the target to one of the endpoints because it would then have no option but turning back: an opening pattern like 2, 3, 4, 5, 6, 7, 8, 8 would take care of a hidden object starting in an even drawer, while the following 7, 6, 5, 4, 3, 2 openings would terminate any random path starting from an odd drawer. To double check:

  for (t in 1:9){
    while (!nomove){
     if (!nomove)

produces the value 14.

flea circus

Posted in Books, Kids, pictures, R, Statistics with tags , , , , , , , , , , , on December 8, 2016 by xi'an

gribAn old riddle found on X validated asking for Monte Carlo resolution  but originally given on Project Euler:

A 30×30 grid of squares contains 30² fleas, initially one flea per square. When a bell is rung, each flea jumps to an adjacent square at random. What is the expected number of unoccupied squares after 50 bell rings, up to six decimal places?

The debate on X validated is whether or not a Monte Carlo resolution is feasible. Up to six decimals, certainly not. But with some lower precision, certainly. Here is a rather basic R code where the 50 steps are operated on the 900 squares, rather than the 900 fleas. This saves some time by avoiding empty squares.


 for (t in 1:n){

   for (v in 1:T){

    if (board[1]>0){
    for (i in (2:899)[board[-1][-899]>0]){
    if (board[900]>0){

The function returns an empirical average over n replications. With a presumably awkward approach to the borderline squares, since it involves adding zeros to keep the structure the same… Nonetheless, it produces an approximation that is rather close to the approximate expected value, in about 3mn on my laptop.

> exprmt(n=1e3)
[1] 331.082
> 900/exp(1)
[1] 331.0915

Further gains follow from considering only half of the squares, as there are two independent processes acting in parallel. I looked at an alternative and much faster approach using the stationary distribution, with the stationary being the Multinomial (450,(2/1740,3/1740…,4/1740,…,2/1740)) with probabilities proportional to 2 in the corner, 3 on the sides, and 4 in the inside. (The process, strictly speaking, has no stationary distribution, since it is periodic. But one can consider instead the subprocess indexed by even times.) This seems to be the case, though, when looking at the occupancy frequencies, after defining the stationary as:



> mn=0;n=1e8 #14 clock hours!
> proz=rep(c(rep(c(0,1),15),rep(c(1,0),15)),15)*inva(30)
> for (t in 1:n)
+ mn=mn+table(rmultinom(1,450,prob=rep(1,450)))[1:4]
> mn=mn/n
> mn[1]=mn[1]-450
> mn
     0      1      2     3
166.11 164.92  82.56 27.71
> exprmt(n=1e6) #55 clock hours!!
[1] 165.36 165.69 82.92 27.57

my original confusion being that the Poisson approximation had not yet taken over… (Of course, computing the first frequency for the stationary distribution does not require any simulation, since it is the sum of the complement probabilities to the power 450, i.e., 166.1069.)

random walk on a torus [riddle]

Posted in Books, Kids, pictures with tags , , , , , , , , , on September 16, 2016 by xi'an

Galgate, Lancastershire, July 19, 2011The Riddler of this week(-end) has a simple riddle to propose, namely given a random walk on the {1,2,…,N} torus with a ⅓ probability of death, what is the probability of death occurring at the starting point?

The question is close to William Feller’s famous Chapter III on random walks. With his equally famous reflection principle. Conditioning on the time n of death, which as we all know is definitely absorbing (!), the event of interest is a passage at zero, or any multiple of N (omitting the torus cancellation), at time n-1 (since death occurs the next time). For a passage in zero, this does not happen if n is even (since n-1 is odd) and else it is a Binomial event with probability

{n \choose \frac{n-1}{2}} 2^{-n}

For a passage in kN, with k different from zero, kN+n must be odd and the probability is then

{n \choose \frac{n-1+kN}{2}} 2^{-n}

which leads to a global probability of

\sum_{n=0}^\infty \dfrac{2^n}{3^{n+1}} \sum_{k=-\lfloor (n-1)/N \rfloor}^{\lfloor (n+1)/N \rfloor} {n \choose \frac{n-1+kN}{2}} 2^{-n}


\sum_{n=0}^\infty \dfrac{1}{3^{n+1}} \sum_{k=-\lfloor (n-1)/N \rfloor}^{\lfloor (n+1)/N \rfloor} {n \choose \frac{n-1+kN}{2}}

Since this formula is rather unwieldy I looked for another approach in a métro ride [to downtown Paris to enjoy a drink with Stephen Stiegler]. An easier one is to allocate to each point on the torus a probability p[i] to die at position 1 and to solve the system of equations that is associated with it. For instance, when N=3, the system of equations is reduced to

p_0=1/3+2/3 p_1, \quad p_1=1/3 p_0 + 1/3 p_1

which leads to a probability of ½ to die at position 0 when leaving from 0. When letting N grows to infinity, the torus structure no longer matters and the probability of dying at position 0 implies returning in position 0, which is a special case of the above combinatoric formula, namely

\sum_{m=0}^\infty \dfrac{1}{3^{2m+1}}  {2m \choose m}

which happens to be equal to

\dfrac{1}{3}\,\dfrac{1}{\sqrt{1-4/9}}=\dfrac{1}{\sqrt{5}}\approx 0.4472

as can be [unnecessarily] checked by a direct R simulation. This √5 is actually the most surprising part of the exercise!

Sunday morning reading

Posted in Books, Kids, University life with tags , , , , , on June 30, 2016 by xi'an

A very interesting issue of Nature I read this morning while having breakfast. A post-brexit read of a pre-brexit issue. Apart from the several articles arguing against Brexit and its dire consequences on British science [but preaching to the converted for which percentage of the Brexit voters does read Nature?!], a short vignette on the differences between fields for the average time spent for refereeing a paper (maths takes twice as long as social sciences and academics older than 65 half the time of researchers under 36!). A letter calling for action against predatory publishers. And the first maths paper published since I started reading Nature on an almost-regular basis: it studies mean first-passage time for non-Markov random walks. Which are specified as time-homogeneous increments. It is sort of a weird maths paper in that I do not see where the maths novelty stands and why the paper only contains half a dozen formulas… Maybe not a maths paper after all.

optimal simulation on a convex set

Posted in R, Statistics with tags , , , , , , on February 4, 2016 by xi'an

La Défense, from Paris-Dauphine, May 2009This morning, we had a jam session at the maths department of Paris-Dauphine where a few researchers & colleagues of mine presented their field of research to the whole department. Very interesting despite or thanks to the variety of topics, with forays into the three-body problem(s) [and Poincaré‘s mistake], mean fields for Nash equilibrium (or how to exit a movie theatre), approximate losses in machine learning and so on. Somehow, there was some unity as well through randomness, convexity and optimal transport. One talk close to my own interests was obviously the study of simulation within convex sets by Joseph Lehec from Paris-Dauphine [and Sébastien Bubeck & Ronen Eldan] as they had established a total variation convergence result at a speed only increasing polynomially with the dimension.  The underlying simulation algorithm is rather theoretical in that it involves random walk (or Langevin corrected) moves where any excursion outside the convex support is replaced with its projection on the set. Projection that may prove pretty expensive to compute if the convex set is defined for instance as the intersection of many hyperplanes. So I do not readily see how the scheme can be recycled into a competitor to a Metropolis-Hastings solution in that the resulting chain hits the boundary from time to time. With the same frequency over iterations. A solution is to instead use Metropolis-Hastings of course, while another one is to bounce on the boundary and then correct by Metropolis-Hastings… The optimal scales in the three different cases are quite different, from √d in the Metropolis-Hastings cases to d√d in the projection case. (I did not follow the bouncing option to the end, as it lacks a normalising constant.) Here is a quick and not particularly helpful comparison of the exploration patterns of both approaches in dimension 50 for the unit sphere and respective scales of 10/d√d [blue] and 1/√d [gold].