Archive for secretary problem

is there such a thing as optimal subsampling?

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , , on June 12, 2020 by xi'an

This idea of optimal thinnin and burnin has been around since the early days of the MCMC revolution and did not come up with a definite answer. For instance, from a pure estimation perspective, subsampling always increases the variance of the resulting estimator. My personal approach is to ignore both burnin and thinnin and rather waste time on running several copies of the code to check for potential discrepancies and get a crude notion of the variability. And to refuse to answer to questions like is 5000 iterations long enough for burnin?

A recent arXival by Riabiz et al. readdresses the issue. In particular concerning this notion that the variance of the subsampled version is higher: this only applies to a deterministic subsampling, as opposed to an MCMC-based subsampling (although this intricacy only makes the problem harder!). I however fail to understand the argument in favour of subsampling based on storage issues (p.4), as a dynamic storage of the running mean for all quantities of interest does not cost anything if the integrand is not particularly demanding. I also disagree at the pessimistic view that the asymptotic variance of the MCMC estimate is hard to estimate: papers by Flegal, Hobert, Jones, Vat and others have rather clearly shown how batch means can produce converging estimates of this asymptotic variance.

“We do not to attempt to solve a continuous optimisation problem for selection of the next point [in the sample]. Such optimisation problems are fundamentally difficult and can at best be approximately solved. Instead, we exactly solve the discrete optimisation problem of selecting a suitable element from a supplied MCMC output.”

One definitely positive aspect of the paper is that the (thinning) method is called Stein thinning, in connection with Stein’s discrepancy, and this honours Charles Stein. The method looks at the optimal subsample, with optimality defined in terms of minimising Stein’s discrepancy from the true target over a reproducible kernel Hilbert space. And then over a subsample to minimise the distance from the empirical distribution to the theoretical distribution. The kernel (11) is based on the gradient of the target log density and the solution is determined by greedy algorithms that determine which next entry to add to the empirical distribution. Which is of complexity O(nm2) if the subsample is of size m. Some entries may appear more than once and the burnin step could be automatically included as (relatively) unlikely values are never selected (at least this was my heuristic understanding). While the theoretical backup for the construct is present and backed by earlier papers of some of the authors, I do wonder at the use of the most rudimentary representation of an approximation to the target when smoother versions could have been chosen and optimised on the same ground. And I am also surprised at the dependence of both estimators and discrepancies on the choice of the (sort-of) covariance matrix in the inner kernel, as the ODE examples provided in the paper (see, e.g., Figure 7). (As an aside and at a shallow level, the approach also reminded me of the principal points of my late friend Bernhard Flury…) Storage of all MCMC simulations for a later post-processing is of course costly in terms of storage, at O(nm). Unless a “secretary problem” approach can be proposed to get sequential. Another possible alternate would be to consider directly the chain of the accepted values (à la vanilla Rao-Blackwellisation). Overall, since the stopping criterion is based on a fixed sample size, and hence depends on the sub-efficiency of evaluating the mass of different modes, I am unsure the method is anything but what-you-get-is-what-you-see, i.e. prone to get misled by a poor exploration of the complete support of the target.

“This paper focuses on nonuniform subsampling and shows that it is more efficiency than uniform subsampling.”

Two weeks later, Guanyu Hu and Hai Ying Wang arXived their Most Likely Optimal Subsampled Markov Chain Monte Carlo, in what I first thought as an answer to the above! But both actually have little in common as this second paper considers subsampling on the data, rather than the MCMC output, towards producing scalable algorithms. Building upon Bardenet et al. (2014) and Korattikara et al. (2014).  Replacing thus the log-likelihood with a random sub-sampled version and deriving the sample size based on a large deviation inequality. By a Cauchy-Schwartz inequality, the authors find sampling probabilities proportional to the individual log-likelihooods. Which depend on the running value of the MCMC’ed parameters. And thus replaced with the values at a fixed parameter, with cost O(n) but only once, but no so much optimal. (The large deviation inequality therein is only concerned with an approximation to the log-likelihood, without examining the long term impact on the convergence of the approximate Markov chain as this is no longer pseudo-marginal MCMC. For instance, both current and prospective log-likelihoods are re-estimated at each iteration. The paper compares with uniform sampling on toy examples,  to demonstrate a smaller estimation error for the statistical problem, rather than convergence to the true posterior.)

Bayesian decision riddle

Posted in Books, Kids, Statistics with tags , , , , on June 15, 2017 by xi'an

The current puzzle on The Riddler is a version of the secretary problem with an interesting (?) Bayesian solution.

Given four positive numbers x¹, x², x³, x⁴, observed sequentially, the associated utility is the value of x at the stopping time. What is the optimal stopping rule?

While nothing is mentioned about the distribution of the x’s, I made the assumption that they were iid and uniformly distributed over (0,M), with M unknown and tried a Bayesian resolution with the non-informative prior π(M)=1/M. And failed. The reason for this failure is that the expected utility is infinite at the first step: while the posterior expected utility is finite with three and two observations, meaning I can compare stopping and continuing at the second and third steps, the predicted expected reward for continuing after observing x¹ does not exist because the expected value of max(x¹,x²) given x¹ does not exist. As the predictive density of x² is max(x¹,x²)⁻²…  Several alternatives are possible to bypass this impossible resolution, from changing the utility function to picking another reference prior.

For instance, using a prior like π(M)=1/M² l(and the same monetary return utility) leads to a proper optimal solution, namely

  1. always wait for the second observation x²
  2. stop at x² if x²>11x¹/12, else wait for x³
  3. stop at x³ if x³>23 max(x¹,x²)/24, else observe x⁴

obtained analytically on a bar table in Rouen (and checked numerically later).

Another approach is to try to optimise the probability to pick the largest amount of the four x’s, but this is not leading to an interesting solution, since it corresponds to picking the first maximum after x¹, while picking the largest among remaining ones leads to a somewhat convoluted solution I have no patience to produce here! Plus this is not a really pertinent loss function as it does not discriminate enough against waiting…

a secretary problem with maximum ability

Posted in Kids, R with tags , , , , on April 28, 2017 by xi'an

The Riddler of today has a secretary problem, where one measures sequentially N random variables until one deems the current variable to be the largest of the whole sample. The classical secretary problem has a counter-intuitive solution where one first measures N/e random variables without taking any decision and then and only then picks the first next outcome larger than the largest in the first group. (For large values of N.) The added information in the current riddle is that the distribution of those iid random variables is set to be uniform on {1,…,M}, which begs for a modification in the algorithm. As for instance when observing M on the current draw.

The approach I devised is certainly suboptimal, as I decided to pick the currently observed value if the (conditional) probability it is the largest is larger than the probability subsequent draws. This translates into the following R code:

M=100 #maximum value
N=10  #total number of draws
hyprob=function(m){
# m is sequence of draws so far
n=length(m);mmax=max(m)
if ((m[n]<mmax)||(mmax-n<N-n)){prob=0
  }else{
  prob=prod(sort((1:mmax)[-m],dec=TRUE)
   [1:(N-n)]/((M-n):(M-N+1))}
return(prob)}

decision=function(draz=sample(1:M,N)){
  i=0
  keepgoin=TRUE
  while ((keepgoin)&(i<N)){
   i=i+1
   keepgoin=(hyprob(draz[1:i])<0.5)}
  return(c(i,draz[i],(draz[i]<max(draz))))}

which produces a winning rate of around 62% when N=10 and M=100, hence much better than the expected performances of the (asymptotic) secretary algorithm, with a winning frequency of 1/e. (For N=10 and M=100, the winning frequency is only 27%.)

%d bloggers like this: