“The results show that the proposed algorithm is asymptotically optimal for the mentioned subclass of functions, in the sense that for any other fast algorithm E[N] grows at least as fast with p.”
Murray Pollock (Warwick U. for a wee more days!) pointed out to me this paper of Luis Mendo on a Bernoulli factory algorithm that estimates functions [of p] that can be expressed as power series [of p]. Essentially functions f(p) such that f(0)=0 and f(1)=1. The big difference with earlier algorithms, as far as I can tell, is that the approach involves a randomised stopping rule that involves, on top of the unlimited sequence of Bernoulli B(p) variates a second sequence of Uniform variates, which sounds to me like a change of paradigm, given the much higher degree of freedom brought by Uniform variates (as opposed to Bernoulli variates with an unknown value of p). Although there exists a non-randomised version in the paper. The proposed algorithm is as follows, using a sequence of d’s issued from the power series coefficients:
1. Set i=1.
2. Take one input X[i].
3. Produce U[i] uniform on (0,1). Let V[i]=1 if U[i]<d[i] and V[i]=0 otherwise.
If V[i] or X[i] are equal to 1, output X[i] and finish.
Else increase i and go back to step2.
As the author mentions, this happens to be a particular case of the reverse-time martingale approach of Łatuszynski, Kosmidis, Papaspiliopoulos and Roberts (Warwick connection as well!). With an average number of steps equal to f(p)/p, surprisingly simple, and somewhat of an optimal rate. While the functions f(p) are somewhat restricted, this is nice work