A question related to the earlier post on the first importance sampling in print, about the fist Markov chain Monte Carlo in print. Again uncovered by Charly, a 1973 Chemical Physics paper by Patey and Valleau, the latter inventing umbrella sampling with Torrie at about the same time. (In a 1972 paper in the same journal with Card, Valleau uses Metropolis Monte Carlo. While Hastings, also at the University of Toronto uses Markov chain sampling.)
Archive for Markov chain Monte Carlo
another first
Posted in Statistics with tags Chemical Physics Letters, history of Monte Carlo, importance sampling, John Valleau, Markov chain Monte Carlo, MCMC, Metropolis algorithm, umbrella sampling, Wilfred Keith Hastings on July 1, 2022 by xi'anapproximate Bayesian inference [survey]
Posted in Statistics with tags ABC, Approximate Bayesian computation, Bayesian statistics, CREST, entropy, expectation-propagation, Gibbs posterior, Langevin Monte Carlo, Laplace approximations, machine learning, Markov chain Monte Carlo, MCMC, PAC-Bayes, RIKEN, sequential Monte Carlo, special issue, survey, Tokyo, variational approximations on May 3, 2021 by xi'anIn connection with the special issue of Entropy I mentioned a while ago, Pierre Alquier (formerly of CREST) has written an introduction to the topic of approximate Bayesian inference that is worth advertising (and freely-available as well). Its reference list is particularly relevant. (The deadline for submissions is 21 June,)
away from CIRM
Posted in Mountains, pictures, Running, Statistics, Travel, University life with tags calanques, CIRM, coordinate sampler, Gibbs sampler, Luminy campus, Markov chain Monte Carlo, Marseille, Mont Puget, PDMP, SMF on November 5, 2020 by xi'anDue to the new lockdown measures enforced in France and in particular in Marseilles, the CIRM workshop on QMC and randomness has turned virtual, and I will thus give my talk on Coordinate sampler : A non-reversible Gibbs-like sampler from Paris. Rather than from the Luminy campus after an early morning run to the top of Mont Puget as we used to do on the previous workshop there. With versions of PDMP running on QMC (which makes sense when considering the deterministic component of the sampler).
Hastings at 50, from a Metropolis
Posted in Kids, pictures, Running, Travel with tags 50 miles, 50 years, Bayesian computation, Biometrika, Channel, East Sussex, H.G. Wells, Hastings, Hauts de France, importance sampling, jatp, Le Touquet Paris-Plage, Markov chain Monte Carlo, Metropolis-Hastings, P.G. Wodehouse, Picardy, posterior sampling, rejection sampling, Saint-Valéry-sur-Somme, sea, tempest, William the Conqueror, winter light on January 4, 2020 by xi'anA weekend trip to the quaint seaside city of Le Touquet Paris-Plage, facing the city of Hastings on the other side of the Channel, 50 miles away (and invisible on the pictures!), during and after a storm that made for a fantastic watch from our beach-side rental, if less for running! The town is far from being a metropolis, actually, but it got its added surname “Paris-Plage” from British investors who wanted to attract their countrymen in the late 1800s. The writers H.G. Wells and P.G. Wodehouse lived there for a while. (Another type of tourist, William the Conqueror, left for Hastings in 1066 from a wee farther south, near Saint-Valéry-sur-Somme.)
And the coincidental on-line publication in Biometrika of a 50 year anniversary paper, The Hastings algorithm at fifty by David Dunson and James Johndrow. More of a celebration than a comprehensive review, with focus on scalable MCMC, gradient based algorithms, Hamiltonian Monte Carlo, nonreversible Markov chains, and interesting forays into approximate Bayes. Which makes for a great read for graduate students and seasoned researchers alike!
Markov Chains [not a book review]
Posted in Books, pictures, Statistics, University life with tags book review, concentration inequalities, coupling, Eric Moulines, irreducibility, Markov chain and stochastic stability, Markov chain Monte Carlo, Markov chains, MCMC convergence, probability theory, Randal Douc, Richard Tweedie, Sean Meyn, Wasserstein distance on January 14, 2019 by xi'anAs Randal Douc and Éric Moulines are both very close friends and two authors of this book on Markov chains, I cannot engage into a regular book review! Judging from the table of contents, the coverage is not too dissimilar to the now classic Markov chain Stochastic Stability book by Sean Meyn and the late Richard Tweedie (1994), called the Bible of Markov chains by Peter Glynn, with more emphasis on convergence matters and a more mathematical perspective. The 757 pages book also includes a massive appendix on maths and probability background. As indicated in the preface, “the reason [the authors] thought it would be useful to write a new book is to survey some of the developments made during the 25 years that have elapsed since the publication of Meyn and Tweedie (1993b).” Connecting with the theoretical developments brought by MCMC methods. Like subgeometric rates of convergence to stationarity, sample paths, limit theorems, and concentration inequalities. The book also reflects on the numerous contributions of the authors to the field. Hence a perfect candidate for teaching Markov chains to mathematically well-prepared. graduate audiences. Congrats to the authors!