## Archive for Australia

## Data Science & Machine Learning book free for download

Posted in Statistics with tags ACEMS, Australia, CRC Press, data science, machine learning, not a book review, textbook, University of Queensland on November 30, 2020 by xi'an## David Frazier’s talk on One World ABC seminar tomorrow [watch for the time!]

Posted in pictures, Statistics, Travel, University life with tags ABC, Australia, Bayesian robustness, daylight saving time, Melbourne, Monash University, One World ABC Seminar, University of Warwick, Victoria, webinar on October 14, 2020 by xi'an**M**y friend and coauthor from Melbourne is giving the One World ABC seminar tomorrow. He will be talking at 10:30 UK time, 11:30 Brussels time, and 20:30 Melbourne time! On Robust and Efficient Approximate Bayesian Computation: A Minimum Distance Approach. Be on time!

## Approximate Bayesian analysis of (un)conditional copulas [webinar]

Posted in Books, pictures, Statistics, University life with tags ABC, Algorithms & Computationally Intensive Inference, Australia, copulas, New South Wales, Sydney, Sydney Harbour, University of Warwick, UNSW, webinar on September 17, 2020 by xi'an**T**he Algorithms & Computationally Intensive Inference seminar (access by request) will virtually resume this week in Warwick U on Friday, 18 Sept., at noon (UK time, ie +1GMT) with a talk by (my coauthor and former PhD student) Clara Grazian (now at UNSW), talking about approximate Bayes for copulas:

Many proposals are now available to model complex data, in particular thanks to the recent advances in computational methodologies and algorithms which allow to work with complicated likelihood function in a reasonable amount of time. However, it is, in general, difficult to analyse data characterized by complicated forms of dependence. Copula models have been introduced as probabilistic tools to describe a multivariate random vector via the marginal distributions and a copula function which captures the dependence structure among the vector components, thanks to the Sklar’s theorem, which states that any d-dimensional absolutely continuous density can be uniquely represented as the product of the marginal distributions and the copula function. Major areas of application include econometrics, hydrological engineering, biomedical science, signal processing and finance. Bayesian methods to analyse copula models tend to be computational intensive or to rely on the choice of a particular copula function, in particular because methods of model selection are not yet fully developed in this setting. We will present a general method to estimate some specific quantities of interest of a generic copula by adopting an approximate Bayesian approach based on an approximation of the likelihood function. Our approach is general, in the sense that it could be adapted both to parametric and nonparametric modelling of the marginal distributions and can be generalised in presence of covariates. It also allow to avoid the definition of the copula function. The class of algorithms proposed allows the researcher to model the joint distribution of a random vector in two separate steps: first the marginal distributions and, then, a copula function which captures the dependence structure among the vector components.

## focused Bayesian prediction

Posted in Books, pictures, Statistics, Travel, University life with tags Australia, Bayesian non-parametrics, Bayesian predictive, Casa Matemática Oaxaca, econometrics, likelihood-free inference, Mexico, misspecification, Monash University, One World ABC Seminar, prediction, pseudo-marginal MCMC, score function, webinar on June 3, 2020 by xi'an**I**n this fourth session of our One World ABC Seminar, my friend and coauthor Gael Martin, gave an after-dinner talk on focused Bayesian prediction, more in the spirit of Bissiri et al. than following a traditional ABC approach. because along with Ruben Loaiza-Maya and [my friend and coauthor] David Frazier, they consider the possibility of a (mild?) misspecification of the model. Using thus scoring rules à la Gneiting and Raftery. Gael had in fact presented an earlier version at our workshop in Oaxaca, in November 2018. As in other solutions of that kind, difficulty in weighting the score into a distribution. Although asymptotic irrelevance, direct impact on the current predictions, at least for the early dates in the time series… Further calibration of the set of interest A. Or the focus of the prediction. As a side note the talk perfectly fits the One World likelihood-free seminar as it does not use the likelihood function!

“The very premise of this paper is that, in reality, any choice of predictive class is such that the truth is not contained therein, at which point there is no reason to presume that the expectation of any particular scoring rule will be maximized at the truth or, indeed, maximized by the same predictive distribution that maximizes a different (expected) score.”

This approach requires the proxy class to be close enough to the true data generating model. Or in the word of the authors to be *plausible predictive* models. And to produce the true distribution via the score as it is proper. Or the closest to the true model in the misspecified family. I thus wonder at a possible extension with a non-parametric version, the prior being thus on functionals rather than parameters, if I understand properly the meaning of Π(P_{θ}). (Could the score function be misspecified itself?!) Since the score is replaced with its empirical version, the implementation is resorting to off-the-shelf MCMC. (I wonder for a few seconds if the approach could be seen as a pseudo-marginal MCMC but the estimation is always based on the same observed sample, hence does not directly fit the pseudo-marginal MCMC framework.)

*[Notice: Next talk in the series is tomorrow, 11:30am GMT+1.]*

## stratified ABC [One World ABC webinar]

Posted in Books, Statistics, University life with tags Ascension, Australia, BayesComp 2020, bootstrap likelihood, Gainesville, groundhog day, Monash University, One World ABC Seminar, stratified sampling on May 15, 2020 by xi'an**T**he third episode of the One World ABC seminar (Season 1!) was kindly delivered by Umberto Picchini on Stratified sampling and bootstrapping for ABC which I already if briefly discussed after BayesComp 2020. Which sounds like a million years ago… His introduction on the importance of estimating the likelihood using a kernel, while 600% justified wrt his talk, made the One World ABC seminar sounds almost like groundhog day! The central argument is in the computational gain brought by simulating a single θ dependent [expensive] dataset followed by [cheaper] bootstrap replicates. Which turns de fact into bootstrapping the summary statistics.

If I understand correctly, the post-stratification approach of Art Owen (2013?, I cannot find the reference) corrects a misrepresentation of mine. Indeed, defining a partition with unknown probability weights seemed to me to annihilate the appeal of stratification, because the Bernoulli variance of the estimated probabilities brought back the same variability as the mother estimator. But with bootstrap, this requires only two simulations, one for the weights and one for the target. And further allows for a larger ABC tolerance *in fine*. Free lunch?!

The speaker in two weeks (21 May or Ascension Thursday!) is my friend and co-author Gael Martin from Monash University, who will speak on Focused Bayesian prediction, at quite a late time down under..!