Archive for Bayesian nonparametrics

ABC in Lapland²

Posted in Mountains, pictures, Statistics, University life with tags , , , , , , , , , , , , , , , , , , , , on March 16, 2023 by xi'an

On the second day of our workshop, Aki Vehtari gave a short talk about his recent works on speed up post processing by importance sampling a simulation of an imprecise version of the likelihood until the desired precision is attained, importance corrected by Pareto smoothing¹⁵. A very interesting foray into the meaning of practical models and the hard constraints on computer precision. Grégoire Clarté (formerly a PhD student of ours at Dauphine) stayed on a similar ground of using sparse GP versions of the likelihood and post processing by VB²³ then stir and repeat!

Riccardo Corradin did model-based clustering when the nonparametric mixture kernel is missing a normalizing constant, using ABC with a Wasserstein distance and an adaptive proposal, with some flavour of ABC-Gibbs (and no issue of label switching since this is clustering). Mixtures of g&k models, yay! Tommaso Rigon reconsidered clustering via a (generalised Bayes à la Bissiri et al.) discrepancy measure rather than a true model, summing over all clusters and observations a discrepancy between said observation and said cluster. Very neat if possibly costly since involving distances to clusters or within clusters. Although she considered post-processing and Bayesian bootstrap, Judith (formerly [?] Dauphine)  acknowledged that she somewhat drifted from the theme of the workshop by considering BvM theorems for functionals of unknown functions, with a form of Laplace correction. (Enjoying Lapland so much that I though “Lap” in Judith’s talk was for Lapland rather than Laplace!!!) And applications to causality.

After the (X country skiing) break, Lorenzo Pacchiardi presented his adversarial approach to ABC, differing from Ramesh et al. (2022) by the use of scoring rule minimisation, where unbiased estimators of gradients are available, Ayush Bharti argued for involving experts in selecting the summary statistics, esp. for misspecified models, and Ulpu Remes presented a Jensen-Shanon divergence for selecting models likelihood-freely²², using a test statistic as summary statistic..

Sam Duffield made a case for generalised Bayesian inference in correcting errors in quantum computers, Joshua Bon went back to scoring rules for correcting the ABC approximation, with an importance step, while Trevor Campbell, Iuri Marocco and Hector McKimm nicely concluded the workshop with lightning-fast talks in place of the cancelled poster session. Great workshop, in my most objective opinion, with new directions!

Saint-Flour, 2023

Posted in Statistics, University life, Travel with tags , , , , on February 4, 2023 by xi'an

All about that [Detective] Bayes [seminar]

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , , , on January 5, 2023 by xi'an
On 10 January 2023, at 14:00, Campus Pierre et Marie Curie (Sorbonne Université), Room 15.16-309, an All about that Bayes seminar presentation by Daniele Durante, visiting Paris Dauphine this month:

Daniele Durante (Bocconi University) – Detective Bayes: Bayesian nonparametric stochastic block modeling of criminal networks

Europol recently defined criminal networks as a modern version of the Hydra mythological creature, with covert structure and multifaceted evolutions. Indeed, relationships data among criminals are subject to measurement errors, structured missingness patterns, and exhibit a complex combination of an unknown number of core-periphery, assortative and disassortative structures that may encode key architectures of the criminal organization. The coexistence of these noisy block patterns limits the reliability of community detection algorithms routinely-used in criminology, thereby leading to overly-simplified and possibly biased reconstructions of organized crime topologies. In this seminar, I will present a number of model-based solutions which aim at covering these gaps via a combination of stochastic block models and priors for random partitions arising from Bayesian nonparametrics. These include Gibbs-type priors, and random partition priors driven by the urn scheme of a hierarchical normalized completely random measure. Product-partition models to incorporate criminals’ attributes, and zero-inflated Poisson representations accounting for weighted edges and secrecy strategies, will be also discussed. Collapsed Gibbs samplers for posterior computation are presented, and refined strategies for estimation, prediction, uncertainty quantification and model selection will be outlined. Results are illustrated in an application to an Italian Mafia network, where the proposed models unveil a structure of the criminal organization mostly hidden to state-of-the-art alternatives routinely used in criminology. I will conclude the seminar with ideas on how to learn the evolutionary history of the criminal organization from the relationship data among its criminals via a novel combination of latent space models for network data and phylogenetic trees.

sunrise on Lago Llanquihue [jatp]

Posted in Mountains, pictures, Running, Travel with tags , , , , , , , , , , , , , , , , on October 26, 2022 by xi'an

nonparametric ABC [seminar]

Posted in pictures, Statistics, University life with tags , , , , , , , , , , , , , on June 3, 2022 by xi'an

Puzzle: How do you run ABC when you mistrust the model?! We somewhat considered this question in our misspecified ABC paper with David and Judith. An AISTATS 2022 paper by Harita Dellaporta (Warwick), Jeremias KnoblauchTheodoros Damoulas (Warwick), and François-Xavier Briol (formerly Warwick) is addressing this same question and Harita presented the paper at the One World ABC webinar yesterday.

It is inspired from Lyddon, Walker & Holmes (2018), who place a nonparametric prior on the generating model, in top of the assumed parametric model (with an intractable likelihood). This induces a push-forward prior on the pseudo-true parameter, that is, the value that brings the parametric family the closest possible to the true distribution of the data. Here defined as a minimum distance parameter, the maximum mean discrepancy (MMD). Choosing RKHS framework allows for a practical implementation, resorting to simulations for posterior realisations from a Dirichlet posterior and from the parametric model, and stochastic gradient for computing the pseudo-true parameter, which may prove somewhat heavy in terms of computing cost.

The paper also containts a consistency result in an ε-contaminated setting (contamination of the assumed parametric family). Comparisons like the above with a fully parametric Wasserstein-ABC approach show that this alter resists better misspecification, as could be expected since the later is not constructed for that purpose.

Next talk is on 23 June by Cosma Shalizi.

%d bloggers like this: