**A** question from X validated had interesting ramifications, about what happens when the prior does not cover the true value of the parameter (assuming there ? In fact, not so much in that, from a decision theoretic perspective, the fact that that π(θ⁰)=0, or even that π(θ)=0 in a neighbourhood of θ⁰ does not matter [too much]. Indeed, the formal derivation of a Bayes estimator as minimising the posterior loss means that the resulting estimator may take values that were “impossible” from a prior perspective! Indeed, taking for example the posterior mean, the convex combination of all possible values of θ under π may well escape the support of π when this support is not convex. Of course, one could argue that estimators should further be restricted to be possible values of θ under π but that would reduce their decision theoretic efficiency.

An example is the brilliant minimaxity result by George Casella and Bill Strawderman from 1981: when estimating a Normal mean μ based on a single observation xwith the additional constraint that |μ|<ρ, and when ρ is small enough, ρ≤1.0567 quite specifically, the minimax estimator for this problem under squared error loss corresponds to a (least favourable) uniform prior on the pair {−ρ,ρ}, meaning that π gives equal weight to −ρ and ρ (and none to any other value of the mean μ). When ρ increases above this bound, the least favourable prior sees its support growing one point at a time, but remaining a finite set of possible values. However the posterior expectation, 𝔼[μ|x], can take any value on (−ρ,ρ).

In an even broader suspension of belief (in the prior), it may be that the prior has such a restricted support that it cannot consistently estimate the (true value of the) parameter, but the associated estimator may remain admissible or minimax.