Archive for Ronald Fisher

Monte Carlo Markov chains

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , , , , , , , , , , , on May 12, 2020 by xi'an

Darren Wraith pointed out this (currently free access) Springer book by Massimiliano Bonamente [whose family name means good spirit in Italian] to me for its use of the unusual Monte Carlo Markov chain rendering of MCMC.  (Google Trend seems to restrict its use to California!) This is a graduate text for physicists, but one could nonetheless expect more rigour in the processing of the topics. Particularly of the Bayesian topics. Here is a pot-pourri of memorable quotes:

“Two major avenues are available for the assignment of probabilities. One is based on the repetition of the experiments a large number of times under the same conditions, and goes under the name of the frequentist or classical method. The other is based on a more theoretical knowledge of the experiment, but without the experimental requirement, and is referred to as the Bayesian approach.”

“The Bayesian probability is assigned based on a quantitative understanding of the nature of the experiment, and in accord with the Kolmogorov axioms. It is sometimes referred to as empirical probability, in recognition of the fact that sometimes the probability of an event is assigned based upon a practical knowledge of the experiment, although without the classical requirement of repeating the experiment for a large number of times. This method is named after the Rev. Thomas Bayes, who pioneered the development of the theory of probability.”

“The likelihood P(B/A) represents the probability of making the measurement B given that the model A is a correct description of the experiment.”

“…a uniform distribution is normally the logical assumption in the absence of other information.”

“The Gaussian distribution can be considered as a special case of the binomial, when the number of tries is sufficiently large.”

“This clearly does not mean that the Poisson distribution has no variance—in that case, it would not be a random variable!”

“The method of moments therefore returns unbiased estimates for the mean and variance of every distribution in the case of a large number of measurements.”

“The great advantage of the Gibbs sampler is the fact that the acceptance is 100 %, since there is no rejection of candidates for the Markov chain, unlike the case of the Metropolis–Hastings algorithm.”

Let me then point out (or just whine about!) the book using “statistical independence” for plain independence, the use of / rather than Jeffreys’ | for conditioning (and sometimes forgetting \ in some LaTeX formulas), the confusion between events and random variables, esp. when computing the posterior distribution, between models and parameter values, the reliance on discrete probability for continuous settings, as in the Markov chain chapter, confusing density and probability, using Mendel’s pea data without mentioning the unlikely fit to the expected values (or, as put more subtly by Fisher (1936), “the data of most, if not all, of the experiments have been falsified so as to agree closely with Mendel’s expectations”), presenting Fisher’s and Anderson’s Iris data [a motive for rejection when George was JASA editor!] as a “a new classic experiment”, mentioning Pearson but not Lee for the data in the 1903 Biometrika paper “On the laws of inheritance in man” (and woman!), and not accounting for the discrete nature of this data in the linear regression chapter, the three page derivation of the Gaussian distribution from a Taylor expansion of the Binomial pmf obtained by differentiating in the integer argument, spending endless pages on deriving standard properties of classical distributions, this appalling mess of adding over the conditioning atoms with no normalisation in a Poisson experiment

P(X=4|\mu=0,1,2) = \sum_{\mu=0}^2 \frac{\mu^4}{4!}\exp\{-\mu\},

botching the proof of the CLT, which is treated before the Law of Large Numbers, restricting maximum likelihood estimation to the Gaussian and Poisson cases and muddling its meaning by discussing unbiasedness, confusing a drifted Poisson random variable with a drift on its parameter, as well as using the pmf of the Poisson to define an area under the curve (Fig. 5.2), sweeping the improperty of a constant prior under the carpet, defining a null hypothesis as a range of values for a summary statistic, no mention of Bayesian perspectives in the hypothesis testing, model comparison, and regression chapters, having one-dimensional case chapters followed by two-dimensional case chapters, reducing model comparison to the use of the Kolmogorov-Smirnov test, processing bootstrap and jackknife in the Monte Carlo chapter without a mention of importance sampling, stating recurrence results without assuming irreducibility, motivating MCMC by the intractability of the evidence, resorting to the term link to designate the current value of a Markov chain, incorporating the need for a prior distribution in a terrible description of the Metropolis-Hastings algorithm, including a discrete proof for its stationarity, spending many pages on early 1990’s MCMC convergence tests rather than discussing the adaptive scaling of proposal distributions, the inclusion of numerical tables [in a 2017 book] and turning Bayes (1763) into Bayes and Price (1763), or Student (1908) into Gosset (1908).

[Usual disclaimer about potential self-plagiarism: this post or an edited version of it could possibly appear later in my Books Review section in CHANCE. Unlikely, though!]

Deirdre McCloskey dans Le Monde

Posted in Statistics with tags , , , , , , , , on January 13, 2020 by xi'an

fiducial inference

Posted in Books, Mountains, pictures, Running, Statistics, Travel with tags , , , , , , , , , , on October 30, 2017 by xi'an

In connection with my recent tale of the many ε’s, I received from Gunnar Taraldsen [from Tronheim, Norge] a paper [jointly written with Bo Lindqvist and just appeared on-line in JSPI] on conditional fiducial models.

“The role of the prior and the statistical model in Bayesian analysis is replaced by the use of the fiducial model x=R(θ,ε) in fiducial inference. The fiducial is obtained in this case without a prior distribution for the parameter.”

Reading this paper after addressing the X validated question made me understood better the fundamental wrongness of fiducial analysis! If I may herein object to Fisher himself… Indeed, when writing x=R(θ,ε), as the representation of the [observed] random variable x as a deterministic transform of a parameter θ and of an [unobserved] random factor ε, the two random variables x and ε are based on the same random preimage ω, i.e., x=x(ω) and ε=ε(ω). Observing x hence sets a massive constraint on the preimage ω and on the conditional distribution of ε=ε(ω). When the fiducial inference incorporates another level of randomness via an independent random variable ε’ and inverts x=R(θ,ε’) into θ=θ(x,ε’), assuming there is only one solution to the inversion, it modifies the nature of the underlying σ-algebra into something that is incompatible with the original model. Because of this sudden duplication of the random variates. While the inversion of this equation x=R(θ,ε’) gives an idea of the possible values of θ when ε varies according to its [prior] distribution, it does not account for the connection between x and ε. And does not turn the original parameter into a random variable with an implicit prior distribution.

As to conditional fiducial distributions, they are defined by inversion of x=R(θ,ε), under a certain constraint on θ, like C(θ)=0, which immediately raises a Pavlovian reaction in me, namely that since the curve C(θ)=0 has measure zero under the original fiducial distribution, how can this conditional solution be uniquely or at all defined. Or to avoid the Borel paradox mentioned in the paper. If I get the meaning of the authors in this section, the resulting fiducial distribution will actually depend on the choice of σ-algebra governing the projection.

“A further advantage of the fiducial approach in the case of a simple fiducial model is that independent samples are produced directly from independent sampling from [the fiducial distribution]. Bayesian simulations most often come as dependent samples from a Markov chain.”

This side argument in “favour” of the fiducial approach is most curious as it brings into the picture computational aspects that do not have any reason to be there. (The core of the paper is concerned with the unicity of the fiducial distribution in some univariate settings. Not with computational issues.)

Barker at the Bernoulli factory

Posted in Books, Statistics with tags , , , , , , , on October 5, 2017 by xi'an

Yesterday, Flavio Gonçalves, Krzysztof Latuszýnski, and Gareth Roberts (Warwick) arXived a paper on Barker’s algorithm for Bayesian inference with intractable likelihoods.

“…roughly speaking Barker’s method is at worst half as good as Metropolis-Hastings.”

Barker’s acceptance probability (1965) is a smooth if less efficient version of Metropolis-Hastings. (Barker wrote his thesis in Adelaide, in the Mathematical Physics department. Most likely, he never interacted with Ronald Fisher, who died there in 1962) This smoothness is exploited by devising a Bernoulli factory consisting in a 2-coin algorithm that manages to simulate the Bernoulli variable associated with the Barker probability, from a coin that can simulate Bernoulli’s with probabilities proportional to [bounded] π(θ). For instance, using a bounded unbiased estimator of the target. And another coin that simulates another Bernoulli on a remainder term. Assuming the bound on the estimate of π(θ) is known [or part of the remainder term]. This is a neat result in that it expands the range of pseudo-marginal methods (and resuscitates Barker’s formula from oblivion!). The paper includes an illustration in the case of the far-from-toyish Wright-Fisher diffusion. [Making Fisher and Barker meeting, in the end!]

inferential models: reasoning with uncertainty [book review]

Posted in Books, Statistics, University life with tags , , , , , , , , , on October 6, 2016 by xi'an

“the field of statistics (…) is still surprisingly underdeveloped (…) the subject lacks a solid theory for reasoning with uncertainty [and] there has been very little progress on the foundations of statistical inference” (p.xvi)

A book that starts with such massive assertions is certainly hoping to attract some degree of attention from the field and likely to induce strong reactions to this dismissal of the not inconsiderable amount of research dedicated so far to statistical inference and in particular to its foundations. Or even attarcting flak for not accounting (in this introduction) for the past work of major statisticians, like Fisher, Kiefer, Lindley, Cox, Berger, Efron, Fraser and many many others…. Judging from the references and the tone of this 254 pages book, it seems like the two authors, Ryan Martin and Chuanhai Liu, truly aim at single-handedly resetting the foundations of statistics to their own tune, which sounds like a new kind of fiducial inference augmented with calibrated belief functions. Be warned that five chapters of this book are built on as many papers written by the authors in the past three years. Which makes me question, if I may, the relevance of publishing a book on a brand-new approach to statistics without further backup from a wider community.

“…it is possible to calibrate our belief probabilities for a common interpretation by intelligent minds.” (p.14)

Chapter 1 contains a description of the new perspective in Section 1.4.2, which I find useful to detail here. When given an observation x from a Normal N(θ,1) model, the authors rewrite X as θ+Z, with Z~N(0,1), as in fiducial inference, and then want to find a “meaningful prediction of Z independently of X”. This seems difficult to accept given that, once X=x is observed, Z=X-θ⁰, θ⁰ being the true value of θ, which belies the independence assumption. The next step is to replace Z~N(0,1) by a random set S(Z) containing Z and to define a belief function bel() on the parameter space Θ by

bel(A|X) = P(X-S(Z)⊆A)

which induces a pseudo-measure on Θ derived from the distribution of an independent Z, since X is already observed. When Z~N(0,1), this distribution does not depend on θ⁰ the true value of θ… The next step is to choose the belief function towards a proper frequentist coverage, in the approximate sense that the probability that bel(A|X) be more than 1-α is less than α when the [arbitrary] parameter θ is not in A. And conversely. This property (satisfied when bel(A|X) is uniform) is called validity or exact inference by the authors: in my opinion, restricted frequentist calibration would certainly sound more adequate.

“When there is no prior information available, [the philosophical justifications for Bayesian analysis] are less than fully convincing.” (p.30)

“Is it logical that an improper “ignorance” prior turns into a proper “non-ignorance” prior when combined with some incomplete information on the whereabouts of θ?” (p.44)

Continue reading