Archive for Series B

the paper where you are a node

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , , , , on February 5, 2019 by xi'an

Sophie Donnet pointed out to me this arXived paper by Tianxi Li, Elizaveta Levina, and Ji Zhu, on a network resampling strategy for X validation, where I appear as a datapoint rather than as a [direct] citation! Which reminded me of the “where you are the hero” gamebooks with which my kids briefly played, before computer games took over. The model selection method is illustrated on a dataset made of X citations [reduced to 706 authors]  in all papers published between 2003 and 2012 in the Annals of Statistics, Biometrika, JASA, and JRSS Series B. With the outcome being the determination of a number of communities, 20, which the authors labelled as they wanted, based on 10 authors with the largest number of citations in the category. As it happens, I appear in the list, within the “mixed (causality + theory + Bayesian)” category (!), along with Jamie Robbins, Paul Fearnhead, Gilles Blanchard, Zhiqiang Tan, Stijn Vansteelandt, Nancy Reid, Jae Kwang Kim, Tyler VanderWeele, and Scott Sisson, which is somewhat mind-boggling in that I am pretty sure I never quoted six of these authors [although I find it hilarious that Jamie appears in the category, given that we almost got into a car crash together, at one of the Valencià meetings!].

a good start in Series B!

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , on January 5, 2019 by xi'an

Just received the great news for the turn of the year that our paper on ABC using Wasserstein distance was accepted in Series B! Inference in generative models using the Wasserstein distance, written by Espen Bernton, Pierre Jacob, Mathieu Gerber, and myself, bypasses the (nasty) selection of summary statistics in ABC by considering the Wasserstein distance between observed and simulated samples. It focuses in particular on non-iid cases like time series in what I find fairly innovative ways. I am thus very glad the paper is going to appear in JRSS B, as it has methodological consequences that should appeal to the community at large.

Biometrika

Posted in Books, Statistics, University life with tags , , , , , , , on November 29, 2017 by xi'an

After ten years of outstanding dedication to Biometrika, Anthony Davison is retiring as Editor of Biometrika on 31 December. Ten years! Running a top journal like Biometrika is a massive service to the statistics community, especially when considering the painstaking stage of literally editing each paper towards the stylistic requirements of the journal. For which we definitely should all be quite grateful to Anthony. And to the new Editor, Paul Fearnhead, for taking over. I will actually join the editorial board as assistant editor, along with Omiros Papaspiliopoulos, meaning we will share together the task of screening and allocating submissions. A bit daunting given the volume of submissions is roughly similar to the one I was handling for Series B ten years ago. And given the PCI Comput Stat experiment starting soon!

the end of the Series B’log…

Posted in Books, Statistics, University life with tags , , , , on September 22, 2017 by xi'an

Today is the last and final day of Series B’log as David Dunson, Piotr Fryzlewicz and myself have decided to stop the experiment, faute de combattants. (As we say in French.) The authors nicely contributed long abstracts of their papers, for which I am grateful, but with a single exception, no one came out with comments or criticisms, and the idea to turn some Series B papers into discussion papers does not seem to appeal, at least in this format. Maybe the concept will be rekindled in another form in the near future, but for now we let it lay down. So be it!

Series B’log

Posted in Books, Statistics, University life with tags , , , , on May 31, 2017 by xi'an

Since the above announcement in the RSS newsletter a few months ago, about the Series B’log coming to life, I have received exactly zero comments from readers, despite several authors kindly contributing an extended abstract of their paper. And announcements to various societies…

Hence I now seriously wonder at the survival probability of the blog, given this collective lack of interest. It may be that the information did not reach enough people (despite my mentioning its existence on each talk I give abroad). It may be that the blog still sounds like “under construction”, in which case I’d like to hear suggestions to make it look more definitive! But overall I remain fairly pessimistic [even conditional on my Gallic gloom] about our chances of success with this experiment which could have turned every Series B paper into a potential discussion paper!

a somewhat hasty announcement

Posted in Books, Statistics, University life with tags , , , , , on March 13, 2017 by xi'an

When I received the above RSS newsletter on Thursday, I was a bit shocked as I had not planned to make the existence of the Series B’log known to the entire Society. Even though it was already visible and with unrestricted access. The reason being that experimenting with authors and editors was easier without additional email and password exchanges…

Anyway, now that we have jumped that Rubicon, I would more than welcome comments and suggestions to make the blog structure more efficient and readable. I am still confused as to how the front page should look like, because I want to keep the hierarchy of the Journal, i.e., volume/issue/paper, reflected in this structure, rather than piling up comments and authors’ summaries in an haphazard manner. I have started to tag entries by the volume/issue tag, in order to keep some of this hierarchy respected but I would like to also provide all entries related to a given paper without getting into much extra-work. Given that I already have to process most entries through latex2wp in the best scenario.

coauthorship and citation networks

Posted in Books, pictures, R, Statistics, University life with tags , , , , , , , , , on February 21, 2017 by xi'an

cozauthorAs I discovered (!) the Annals of Applied Statistics in my mailbox just prior to taking the local train to Dauphine for the first time in 2017 (!), I started reading it on the way, but did not get any further than the first discussion paper by Pengsheng Ji and Jiashun Jin on coauthorship and citation networks for statisticians. I found the whole exercise intriguing, I must confess, with little to support a whole discussion on the topic. I may have read the paper too superficially as a métro pastime, but to me it sounded more like a post-hoc analysis than a statistical exercise, something like looking at the network or rather at the output of a software representing networks and making sense of clumps and sub-networks a posteriori. (In a way this reminded of my first SAS project at school, on the patterns of vacations in France. It was in 1983 on pinched cards. And we spent a while cutting & pasting in a literal sense the 80 column graphs produced by SAS on endless listings.)

It may be that part of the interest in the paper is self-centred. I do not think analysing a similar dataset in another field like deconstructionist philosophy or Korean raku would have attracted the same attention. Looking at the clusters and the names on the pictures is obviously making sense, if more at a curiosity than a scientific level, as I do not think this brings much in terms of ranking and evaluating research (despite what Bernard Silverman suggests in his preface) or understanding collaborations (beyond the fact that people in the same subfield or same active place like Duke tend to collaborate). Speaking of curiosity, I was quite surprised to spot my name in one network and even more to see that I was part of the “High-Dimensional Data Analysis” cluster, rather than of the “Bayes” cluster.  I cannot fathom how I ended up in that theme, as I cannot think of a single paper of mines pertaining to either high dimensions or data analysis [to force the trait just a wee bit!]. Maybe thanks to my joint paper with Peter Mueller. (I tried to check the data itself but cannot trace my own papers in the raw datafiles.)

I also wonder what is the point of looking at solely four major journals in the field, missing for instance most of computational statistics and biostatistics, not to mention machine learning or econometrics. This results in a somewhat narrow niche, if obviously recovering the main authors in the [corresponding] field. Some major players in computational stats still make it to the lists, like Gareth Roberts or Håvard Rue, but under the wrong categorisation of spatial statistics.