## Archive for JRSSB

## congrats, Håvard!!!

Posted in Statistics with tags approximate Bayesian inference, computational statistics, Gaussian Markov fields, Guy Medal, honours, INLA, Journal of the Royal Statistical Society, JRSSB, Laplace approximation, R-INLA, Royal Statistical Society, software on March 4, 2021 by xi'an## misspecified [but published!]

Posted in Statistics with tags ABC, Approximate Bayesian computation, Journal of the Royal Statistical Society, JRSSB, misspecified model, Series B on April 1, 2020 by xi'an## Jeffreys priors for hypothesis testing [Bayesian reads #2]

Posted in Books, Statistics, University life with tags Arnold Zellner, Bayes factor, Bayesian tests of hypotheses, CDT, class, classics, Gaussian mixture, improper priors, Jeffreys prior, JRSSB, Kullback-Leibler divergence, Oxford, PhD course, Saint Giles cemetery, Susie Bayarri, Theory of Probability, University of Oxford on February 9, 2019 by xi'anA second (re)visit to a reference paper I gave to my OxWaSP students for the last round of this CDT joint program. Indeed, this may be my first complete read of Susie Bayarri and Gonzalo Garcia-Donato 2008 Series B paper, inspired by Jeffreys’, Zellner’s and Siow’s proposals in the Normal case. *(Disclaimer: I was not the JRSS B editor for this paper.) *Which I saw as a talk at the O’Bayes 2009 meeting in Phillie.

The paper aims at constructing formal rules for objective proper priors in testing embedded hypotheses, in the spirit of Jeffreys’ Theory of Probability “hidden gem” (Chapter 3). The proposal is based on symmetrised versions of the Kullback-Leibler divergence κ between null and alternative used in a transform like an inverse power of 1+κ. With a power large enough to make the prior proper. Eventually multiplied by a reference measure (i.e., the arbitrary choice of a dominating measure.) Can be generalised to any intrinsic loss (not to be confused with an intrinsic prior à la Berger and Pericchi!). Approximately Cauchy or Student’s t by a Taylor expansion. To be compared with Jeffreys’ original prior equal to the derivative of the atan transform of the root divergence (!). A delicate calibration by an effective sample size, lacking a general definition.

At the start the authors rightly insist on having the nuisance parameter v to differ for each model but… as we all often do they relapse back to having the “same ν” in both models for integrability reasons. Nuisance parameters make the definition of the divergence prior somewhat harder. Or somewhat arbitrary. Indeed, as in reference prior settings, the authors work first conditional on the nuisance then use a prior on ν that may be improper by the “same” argument. (Although *conditioning* is not the proper term if the marginal prior on ν is improper.)

The paper also contains an interesting case of the translated Exponential, where the prior is L¹ Student’s t with 2 degrees of freedom. And another one of mixture models albeit in the simple case of a location parameter on one component only.

## mixture modelling for testing hypotheses

Posted in Books, Statistics, University life with tags Bayes factor, Bayesian hypothesis testing, Christophe Andrieu, controlled MCMC, JRSSB, peer review, Read paper, revision, testing as mixture estimation, Ultimixt, University of Bristol on January 4, 2019 by xi'an**A**fter a fairly long delay (since the first version was posted and submitted in December 2014), we eventually revised and resubmitted our paper with Kaniav Kamary [who has now graduated], Kerrie Mengersen, and Judith Rousseau on the final day of 2018. The main reason for this massive delay is mine’s, as I got fairly depressed by the general tone of the dozen of reviews we received after submitting the paper as a Read Paper in the Journal of the Royal Statistical Society. Despite a rather opposite reaction from the community (an admittedly biased sample!) including two dozens of citations in other papers. (There seems to be a pattern in my submissions of Read Papers, witness our earlier and unsuccessful attempt with Christophe Andrieu in the early 2000’s with the paper on controlled MCMC, leading to 121 citations so far according to G scholar.) Anyway, thanks to my co-authors keeping up the fight!, we started working on a revision including stronger convergence results, managing to show that the approach leads to an optimal separation rate, contrary to the Bayes factor which has an extra √log(n) factor. This may sound paradoxical since, while the Bayes factor converges to 0 under the alternative model exponentially quickly, the convergence rate of the mixture weight α to 1 is of order 1/√n, but this does not mean that the separation rate of the procedure based on the mixture model is worse than that of the Bayes factor. On the contrary, while it is well known that the Bayes factor leads to a separation rate of order √log(n) in parametric models, we show that our approach can lead to a testing procedure with a better separation rate of order 1/√n. We also studied a non-parametric setting where the null is a specified family of distributions (e.g., Gaussians) and the alternative is a Dirichlet process mixture. Establishing that the posterior distribution concentrates around the null at the rate √log(n)/√n. We thus resubmitted the paper for publication, although not as a Read Paper, with hopefully more luck this time!