Archive for abcpmc

astroABC: ABC SMC sampler for cosmological parameter estimation

Posted in Books, R, Statistics, University life with tags , , , , , , , , on September 6, 2016 by xi'an

“…the chosen statistic needs to be a so-called sufficient statistic in that any information about the parameter of interest which is contained in the data, is also contained in the summary statistic.”

Elise Jenningsa and Maeve Madigan arXived a paper on a new Python code they developed for implementing ABC-SMC, towards astronomy or rather cosmology applications. They stress the parallelisation abilities of their approach which leads to “crucial speed enhancement” against the available competitors, abcpmc and cosmoabc. The version of ABC implemented there is “our” ABC PMC where particle clouds are shifted according to mixtures of random walks, based on each and every point of the current cloud, with a scale equal to twice the estimated posterior variance. (The paper curiously refers to non-astronomy papers through their arXiv version, even when they have been published. Like our 2008 Biometrika paper.) A large part of the paper is dedicated to computing aspects that escape me, like the constant reference to MPIs. The algorithm is partly automated, except for the choice of the summary statistics and of the distance. The tolerance is chosen as a (large) quantile of the previous set of simulated distances. Getting comments from the designers of abcpmc and cosmoabc would be great.

“It is clear that the simple Gaussian Likelihood assumption in this case, which neglects the effects of systematics yields biased cosmological constraints.”

The last part of the paper compares ABC and MCMC on a supernova simulated dataset. Which is somewhat a dubious comparison since the model used for producing the data and running ABC is not the same as the Gaussian version used with MCMC. Unsurprisingly, MCMC then misses the true value of the cosmological parameters and most likely and more importantly the true posterior HPD region. While ABC SMC (or PMC) proceeds to a concentration around the genuine parameter values. (There is no additional demonstration of how accelerated the approach is.)

ABC and cosmology

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , , , on May 4, 2015 by xi'an

Two papers appeared on arXiv in the past two days with the similar theme of applying ABC-PMC [one version of which we developed with Mark Beaumont, Jean-Marie Cornuet, and Jean-Michel Marin in 2009] to cosmological problems. (As a further coincidence, I had just started refereeing yet another paper on ABC-PMC in another astronomy problem!) The first paper cosmoabc: Likelihood-free inference via Population Monte Carlo Approximate Bayesian Computation by Ishida et al. [“et al” including Ewan Cameron] proposes a Python ABC-PMC sampler with applications to galaxy clusters catalogues. The paper is primarily a description of the cosmoabc package, including code snapshots. Earlier occurrences of ABC in cosmology are found for instance in this earlier workshop, as well as in Cameron and Pettitt earlier paper. The package offers a way to evaluate the impact of a specific distance, with a 2D-graph demonstrating that the minimum [if not the range] of the simulated distances increases with the parameters getting away from the best parameter values.

“We emphasis [sic] that the choice of the distance function is a crucial step in the design of the ABC algorithm and the reader must check its properties carefully before any ABC implementation is attempted.” E.E.O. Ishida et al.

The second [by one day] paper Approximate Bayesian computation for forward modelling in cosmology by Akeret et al. also proposes a Python ABC-PMC sampler, abcpmc. With fairly similar explanations: maybe both samplers should be compared on a reference dataset. While I first thought the description of the algorithm was rather close to our version, including the choice of the empirical covariance matrix with the factor 2, it appears it is adapted from a tutorial in the Journal of Mathematical Psychology by Turner and van Zandt. One out of many tutorials and surveys on the ABC method, of which I was unaware, but which summarises the pre-2012 developments rather nicely. Except for missing Paul Fearnhead’s and Dennis Prangle’s semi-automatic Read Paper. In the abcpmc paper, the update of the covariance matrix is the one proposed by Sarah Filippi and co-authors, which includes an extra bias term for faraway particles.

“For complex data, it can be difficult or computationally expensive to calculate the distance ρ(x; y) using all the information available in x and y.” Akeret et al.

In both papers, the role of the distance is stressed as being quite important. However, the cosmoabc paper uses an L1 distance [see (2) therein] in a toy example without normalising between mean and variance, while the abcpmc paper suggests using a Mahalanobis distance that turns the d-dimensional problem into a comparison of one-dimensional projections.