Archive for ABC-PMC


Posted in Books, Kids, Statistics, University life with tags , , , , , , , , , , on November 5, 2018 by xi'an

A paper by Alexander Buchholz (CREST) and Nicolas Chopin (CREST) on quasi-Monte Carlo methods for ABC is going to appear in the Journal of Computational and Graphical Statistics. I had missed the opportunity when it was posted on arXiv and only became aware of the paper’s contents when I reviewed Alexander’s thesis for the doctoral school. The fact that the parameters are simulated (in ABC) from a prior that is quite generally a standard distribution while the pseudo-observations are simulated from a complex distribution (associated with the intractability of the likelihood function) means that the use of quasi-Monte Carlo sequences is in general only possible for the first part.

The ABC context studied there is close to the original version of ABC rejection scheme [as opposed to SMC and importance versions], the main difference standing with the use of M pseudo-observations instead of one (of the same size as the initial data). This repeated version has been discussed and abandoned in a strict Monte Carlo framework in favor of M=1 as it increases the overall variance, but the paper uses this version to show that the multiplication of pseudo-observations in a quasi-Monte Carlo framework does not increase the variance of the estimator. (Since the variance apparently remains constant when taking into account the generation time of the pseudo-data, we can however dispute the interest of this multiplication, except to produce a constant variance estimator, for some targets, or to be used for convergence assessment.) L The article also covers the bias correction solution of Lee and Latuszyǹski (2014).

Due to the simultaneous presence of pseudo-random and quasi-random sequences in the approximations, the authors use the notion of mixed sequences, for which they extend a one-dimension central limit theorem. The paper focus on the estimation of Z(ε), the normalization constant of the ABC density, ie the predictive probability of accepting a simulation which can be estimated at a speed of O(N⁻¹) where N is the number of QMC simulations, is a wee bit puzzling as I cannot figure the relevance of this constant (function of ε), especially since the result does not seem to generalize directly to other ABC estimators.

A second half of the paper considers a sequential version of ABC, as in ABC-SMC and ABC-PMC, where the proposal distribution is there  based on a Normal mixture with a small number of components, estimated from the (particle) sample of the previous iteration. Even though efficient techniques for estimating this mixture are available, this innovative step requires a calculation time that should be taken into account in the comparisons. The construction of a decreasing sequence of tolerances ε seems also pushed beyond and below what a sequential approach like that of Del Moral, Doucet and Jasra (2012) would produce, it seems with the justification to always prefer the lower tolerances. This is not necessarily the case, as recent articles by Li and Fearnhead (2018a, 2018b) and ours have shown (Frazier et al., 2018). Overall, since ABC methods are large consumers of simulation, it is interesting to see how the contribution of QMC sequences results in the reduction of variance and to hope to see appropriate packages added for standard distributions. However, since the most consuming part of the algorithm is due to the simulation of the pseudo-data, in most cases, it would seem that the most relevant focus should be on QMC add-ons on this part, which may be feasible for models with a huge number of standard auxiliary variables as for instance in population evolution.

optimal proposal for ABC

Posted in Statistics with tags , , , , , , , , , , on October 8, 2018 by xi'an

As pointed out by Ewan Cameron in a recent c’Og’ment, Justin Alsing, Benjamin Wandelt, and Stephen Feeney have arXived last August a paper where they discuss an optimal proposal density for ABC-SMC and ABC-PMC. Optimality being understood as maximising the effective sample size.

“Previous studies have sought kernels that are optimal in the (…) Kullback-Leibler divergence between the proposal KDE and the target density.”

The effective sample size for ABC-SMC is actually the regular ESS multiplied by the fraction of accepted simulations. Which surprisingly converges to the ratio


under the (true) posterior. (Where q(θ) is the importance density and π(θ) the prior density.] When optimised in q, this usually produces an implicit equation which results in a form of geometric mean between posterior and prior. The paper looks at approximate ways to find this optimum. Especially at an upper bound on q. Something I do not understand from the simulations is that the starting point seems to be the plain geometric mean between posterior and prior, in a setting where the posterior is supposedly unavailable… Actually the paper is silent on how the optimal can be approximated in practice, for the very reason I just mentioned. Apart from using a non-parametric or mixture estimate of the posterior after each SMC iteration, which may prove extremely costly when processed through the optimisation steps. However, an interesting if side outcome of these simulations is that the above geometric mean does much better than the posterior itself when considering the effective sample size.

astroABC: ABC SMC sampler for cosmological parameter estimation

Posted in Books, R, Statistics, University life with tags , , , , , , , , on September 6, 2016 by xi'an

“…the chosen statistic needs to be a so-called sufficient statistic in that any information about the parameter of interest which is contained in the data, is also contained in the summary statistic.”

Elise Jenningsa and Maeve Madigan arXived a paper on a new Python code they developed for implementing ABC-SMC, towards astronomy or rather cosmology applications. They stress the parallelisation abilities of their approach which leads to “crucial speed enhancement” against the available competitors, abcpmc and cosmoabc. The version of ABC implemented there is “our” ABC PMC where particle clouds are shifted according to mixtures of random walks, based on each and every point of the current cloud, with a scale equal to twice the estimated posterior variance. (The paper curiously refers to non-astronomy papers through their arXiv version, even when they have been published. Like our 2008 Biometrika paper.) A large part of the paper is dedicated to computing aspects that escape me, like the constant reference to MPIs. The algorithm is partly automated, except for the choice of the summary statistics and of the distance. The tolerance is chosen as a (large) quantile of the previous set of simulated distances. Getting comments from the designers of abcpmc and cosmoabc would be great.

“It is clear that the simple Gaussian Likelihood assumption in this case, which neglects the effects of systematics yields biased cosmological constraints.”

The last part of the paper compares ABC and MCMC on a supernova simulated dataset. Which is somewhat a dubious comparison since the model used for producing the data and running ABC is not the same as the Gaussian version used with MCMC. Unsurprisingly, MCMC then misses the true value of the cosmological parameters and most likely and more importantly the true posterior HPD region. While ABC SMC (or PMC) proceeds to a concentration around the genuine parameter values. (There is no additional demonstration of how accelerated the approach is.)

Bayesian Indirect Inference and the ABC of GMM

Posted in Books, Statistics, University life with tags , , , , , , , , , , on February 17, 2016 by xi'an

“The practicality of estimation of a complex model using ABC is illustrated by the fact that we have been able to perform 2000 Monte Carlo replications of estimation of this simple DSGE model, using a single 32 core computer, in less than 72 hours.” (p.15)

Earlier this week, Michael Creel and his coauthors arXived a long paper with the above title, where ABC relates to approximate Bayesian computation. In short, this paper provides deeper theoretical foundations for the local regression post-processing of Mark Beaumont and his coauthors (2002). And some natural extensions. But apparently considering one univariate transform η(θ) of interest at a time. The theoretical validation of the method is that the resulting estimators converge at speed √n under some regularity assumptions. Including the identifiability of the parameter θ in the mean of the summary statistics T, which relates to our consistency result for ABC model choice. And a CLT on an available (?) preliminary estimator of η(θ).

The paper also includes a GMM version of ABC which appeal is less clear to me as it seems to rely on a preliminary estimator of the univariate transform of interest η(θ). Which is then randomized by a normal random walk. While this sounds a wee bit like noisy ABC, it differs from this generic approach as the model is not assumed to be known, but rather available through an asymptotic Gaussian approximation. (When the preliminary estimator is available in closed form, I do not see the appeal of adding this superfluous noise. When it is unavailable, it is unclear why a normal perturbation can be produced.)

“[In] the method we study, the estimator is consistent, asymptotically normal, and asymptotically as efficient as a limited information maximum likelihood estimator. It does not require either optimization, or MCMC, or the complex evaluation of the likelihood function.” (p.3)

Overall, I have trouble relating the paper to (my?) regular ABC in that the outcome of the supported procedures is an estimator rather than a posterior distribution. Those estimators are demonstrably endowed with convergence properties, including quantile estimates that can be exploited for credible intervals, but this does not produce a posterior distribution in the classical Bayesian sense. For instance, how can one run model comparison in this framework? Furthermore, each of those inferential steps requires solving another possibly costly optimisation problem.

“Posterior quantiles can also be used to form valid confidence intervals under correct model specification.” (p.4)

Nitpicking(ly), this statement is not correct in that posterior quantiles produce valid credible intervals and only asymptotically correct confidence intervals!

“A remedy is to choose the prior π(θ) iteratively or adaptively as functions of initial estimates of θ, so that the “prior” becomes dependent on the data, which can be denoted as π(θ|T).” (p.6)

This modification of the basic ABC scheme relying on simulation from the prior π(θ) can be found in many earlier references and the iterative construction of a better fitted importance function rather closely resembles ABC-PMC. Once again nitpicking(ly), the importance weights are defined therein (p.6) as the inverse of what they should be.

ABC for big data

Posted in Books, Statistics, University life with tags , , , , , , , on June 23, 2015 by xi'an

abcpestou“The results in this paper suggest that ABC can scale to large data, at least for models with a xed number of parameters, under the assumption that the summary statistics obey a central limit theorem.”

In a week rich with arXiv submissions about MCMC and “big data”, like the Variational consensus Monte Carlo of Rabinovich et al., or scalable Bayesian inference via particle mirror descent by Dai et al., Wentao Li and Paul Fearnhead contributed an impressive paper entitled Behaviour of ABC for big data. However, a word of warning: the title is somewhat misleading in that the paper does not address the issue of big or tall data per se, e.g., the impossibility to handle the whole data at once and to reproduce it by simulation, but rather the asymptotics of ABC. The setting is not dissimilar to the earlier Fearnhead and Prangle (2012) Read Paper. The central theme of this theoretical paper [with 24 pages of proofs!] is to study the connection between the number N of Monte Carlo simulations and the tolerance value ε when the number of observations n goes to infinity. A main result in the paper is that the ABC posterior mean can have the same asymptotic distribution as the MLE when ε=o(n-1/4). This is however in opposition with of no direct use in practice as the second main result that the Monte Carlo variance is well-controlled only when ε=O(n-1/2).

Something I have (slight) trouble with is the construction of an importance sampling function of the fABC(s|θ)α when, obviously, this function cannot be used for simulation purposes. The authors point out this fact, but still build an argument about the optimal choice of α, namely away from 0 and 1, like ½. Actually, any value different from 0,1, is sensible, meaning that the range of acceptable importance functions is wide. Most interestingly (!), the paper constructs an iterative importance sampling ABC in a spirit similar to Beaumont et al. (2009) ABC-PMC. Even more interestingly, the ½ factor amounts to updating the scale of the proposal as twice the scale of the target, just as in PMC.

Another aspect of the analysis I do not catch is the reason for keeping the Monte Carlo sample size to a fixed value N, while setting a sequence of acceptance probabilities (or of tolerances) along iterations. This is a very surprising result in that the Monte Carlo error does remain under control and does not dominate the overall error!

“Whilst our theoretical results suggest that point estimates based on the ABC posterior have good properties, they do not suggest that the ABC posterior is a good approximation to the true posterior, nor that the ABC posterior will accurately quantify the uncertainty in estimates.”

Overall, this is clearly a paper worth reading for understanding the convergence issues related with ABC. With more theoretical support than the earlier Fearnhead and Prangle (2012). However, it does not provide guidance into the construction of a sequence of Monte Carlo samples nor does it discuss the selection of the summary statistic, which has obviously a major impact on the efficiency of the estimation. And to relate to the earlier warning, it does not cope with “big data” in that it reproduces the original simulation of the n sized sample.

ABC and cosmology

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , , , on May 4, 2015 by xi'an

Two papers appeared on arXiv in the past two days with the similar theme of applying ABC-PMC [one version of which we developed with Mark Beaumont, Jean-Marie Cornuet, and Jean-Michel Marin in 2009] to cosmological problems. (As a further coincidence, I had just started refereeing yet another paper on ABC-PMC in another astronomy problem!) The first paper cosmoabc: Likelihood-free inference via Population Monte Carlo Approximate Bayesian Computation by Ishida et al. [“et al” including Ewan Cameron] proposes a Python ABC-PMC sampler with applications to galaxy clusters catalogues. The paper is primarily a description of the cosmoabc package, including code snapshots. Earlier occurrences of ABC in cosmology are found for instance in this earlier workshop, as well as in Cameron and Pettitt earlier paper. The package offers a way to evaluate the impact of a specific distance, with a 2D-graph demonstrating that the minimum [if not the range] of the simulated distances increases with the parameters getting away from the best parameter values.

“We emphasis [sic] that the choice of the distance function is a crucial step in the design of the ABC algorithm and the reader must check its properties carefully before any ABC implementation is attempted.” E.E.O. Ishida et al.

The second [by one day] paper Approximate Bayesian computation for forward modelling in cosmology by Akeret et al. also proposes a Python ABC-PMC sampler, abcpmc. With fairly similar explanations: maybe both samplers should be compared on a reference dataset. While I first thought the description of the algorithm was rather close to our version, including the choice of the empirical covariance matrix with the factor 2, it appears it is adapted from a tutorial in the Journal of Mathematical Psychology by Turner and van Zandt. One out of many tutorials and surveys on the ABC method, of which I was unaware, but which summarises the pre-2012 developments rather nicely. Except for missing Paul Fearnhead’s and Dennis Prangle’s semi-automatic Read Paper. In the abcpmc paper, the update of the covariance matrix is the one proposed by Sarah Filippi and co-authors, which includes an extra bias term for faraway particles.

“For complex data, it can be difficult or computationally expensive to calculate the distance ρ(x; y) using all the information available in x and y.” Akeret et al.

In both papers, the role of the distance is stressed as being quite important. However, the cosmoabc paper uses an L1 distance [see (2) therein] in a toy example without normalising between mean and variance, while the abcpmc paper suggests using a Mahalanobis distance that turns the d-dimensional problem into a comparison of one-dimensional projections.

Adaptive ABC

Posted in Statistics, University life with tags , , , , , , on November 9, 2011 by xi'an

Maxime Lenormand, Franck Jabot and Guillaume Deffuant have just posted on arXiv a paper about a refinement of the ABC-PMC algorithm we developed with Marc Beaumont, Jean-Marie Cornuet, and Jean-Michel Marin. The authors state in their introduction that ABC-PMC

presents two shortcomings which are particularly problematic for costly to simulate complex models. First, the sequence of tolerance levels ε1,…,εT has to be provided to the ABC algorithm. In practice, this implies to do preliminary simulations of the model, a step which is computationally costly for complex models. Furthermore, a badly chosen sequence of tolerance levels may inflate the number of simulations required to reach a given precision as we will see below. A second shortcoming of the PMC-ABC algorithm is that it lacks a criterion to decide whether it has converged. The final tolerance level εT may be too large for the ABC approach to satisfactorily approximate the posterior distribution of the model. Inversely, a larger εT may be sufficient to obtain a good approximation of the posterior distribution, hence sparing a number of model simulations.

shortcomings which I thought were addressed by the ABC-SMC algorithm of Pierre Del Moral, Arnaud Doucet and Ajay Jasra [not referenced in the current paper], the similar algorithm of Chris Drovandi and Tony Pettitt, and our recent paper with  Jean-Michel Marin, Pierre Pudlo and Mohammed Sedki [presented at ABC in London, submitted to Statistics and Computing a few months ago, but alas not available on-line for unmentionable reasons linked to the growing dysfunctionality of one co-author…!]. It is correct that we did not address the choice of the εt‘s in the original paper, even though we already used an on-line selection as a quantile of the current sample of distances. In essence, given the fundamentally non-parametric nature of ABC, the tolerances εt should always be determined from the simulated samples, as regular bandwidths.

The paper essentially proposes the same scheme as in Del Moral et al., before applying it to the toy example of Sisson et al. (PNAS, 2007) and to a more complex job dynamic model in central France. Were I to referee this paper, I would thus suggest that the authors incorporate a comparison with both papers of Del Moral et al. and of Drovandi and Pettitt to highlight the methodological  novelty of their approach.