Archive for competition

IFSC 2020, Briançon [jatp]

Posted in Kids, Mountains, pictures, Running, Travel with tags , , , , , , , , , , , , , , , on August 23, 2020 by xi'an

 

Calanques, calanques [aka 40/40]

Posted in Mountains, pictures, Running, Travel, University life with tags , , , , , , , , , , , on May 17, 2019 by xi'an

50/50 photography competition [another public image]

Posted in Statistics with tags , , , , , on February 17, 2019 by xi'an

Le Monde puzzle [#1078]

Posted in Books, Kids, R with tags , , , , , , on November 29, 2018 by xi'an

Recalling Le Monde mathematical puzzle  first competition problem

Given yay/nay answers to the three following questions about the integer 13≤n≤1300 (i) is the integer n less than 500? (ii) is n a perfect square? (iii) is n a perfect cube?  n cannot be determined, but it is certain that any answer to the fourth question (iv) are all digits of n distinct? allows to identify n. What is n if the answer provided for (ii) was false.

When looking at perfect squares less than 1300 (33) and perfect cubes less than 1300 (8), there exists one single common integer less than 500 (64) and one single above (729). Hence, it is not possible that answers to (ii) and (iii) are both positive, since the final (iv) would then be unnecessary. If the answer to (ii) is negative and the answer to (iii) is positive, it would mean that the value of n is either 512 or 10³ depending on the answer to (i), excluding numbers below 500 since there is no unicity even after (iv). When switching to a positive answer to (ii), this produces 729 as the puzzle solution.

Incidentally, while Amic, Robin, and I finished among the 25 ex-aequos of the competition, none of us reached the subsidiary maximal number of points to become the overall winner. It may be that I will attend the reward ceremony at Musée des Arts et Métiers next Sunday.

Le Monde puzzle [#1075]

Posted in Books, Kids, R with tags , , , , , , , on November 22, 2018 by xi'an

A Le Monde mathematical puzzle from after the competition:

A sequence of five integers can only be modified by subtracting an integer N from two neighbours of an entry and adding 2N to the entry.  Given the configuration below, what is the minimal number of steps to reach non-negative entries everywhere? Is this feasible for any configuration?

As I quickly found a solution by hand in four steps, but missed the mathematical principle behind!, I was not very enthusiastic in trying a simulated annealing version by selecting the place to change inversely proportional to its value, but I eventually tried and also obtained the same solution:

      [,1] [,2] [,3] [,4] [,5]
   -3    1    1    1    1
    1   -1    1    1   -1
    0    1    0    1   -1
   -1    1    0    0    1
    1    0    0    0    0

But (update!) Jean-Louis Fouley came up with one step less!

      [,1] [,2] [,3] [,4] [,5]
   -3    1    1    1    1
    3   -2    1    1   -2
    2    0    0    1   -2
    1    0    0    0    0

The second part of the question is more interesting, but again without a clear mathematical lead, I could only attempt a large number of configurations and check whether all admitted “solutions”. So far none failed.