**A** revealing question on X validated the past week was asking for a random generator that is “more random” than the outcome of a specific random generator, à la Oliver Twist:The question is revealing of a quite common misunderstanding of the nature of random variables (as deterministic measurable transforms of a fundamental alea) and of their maybe paradoxical ability to enjoy stability or predictable properties. And much less that it relates to the long-lasting debate about the very [elusive] nature of randomness. The title of the question is equally striking: “Random numbers without pre-specified distribution” which could be given some modicum of meaning in a non-parametric setting, still depending on the choices made at the different levels of the model…

## Archive for randomness

## more random than random!

Posted in Books, Kids, pictures, Statistics with tags Charles Dickens, cross validated, Oliver Twist, random number generator, random variates, randomness, xkcd on December 8, 2017 by xi'an## 10 great ideas about chance [book preview]

Posted in Books, pictures, Statistics, University life with tags Abraham Wald, Alan Turing, Allais' paradox, Alonzo Church, Andrei Kolmogorov, BFF4, book review, Borel-Kolmogorov paradox, Brian Skyrms, Bruno de Finetti, Cardano's formula, CHANCE, David Hume, Dutch book argument, equiprobability, exchangeability, Frank Ramsey, gambling, Gerolamo Cardano, Henri Poincaré, heuristics, Jakob Bernoulli, John Maynard Keynes, John von Neumann, Karl Popper, Martin-Löf, measure theory, p-values, Persi Diaconis, Pierre Simon Laplace, PUP, Radon-Nikodym Theorem, randomness, Richard von Mises, sufficiency, Thomas Bayes, Venn diagram on November 13, 2017 by xi'an*[As I happened to be a reviewer of this book by Persi Diaconis and Brian Skyrms, I had the opportunity (and privilege!) to go through its earlier version. Here are the [edited] comments I sent back to PUP and the authors about this earlier version. All in all, a terrific book!!!]*

**T**he historical introduction (“measurement”) of this book is most interesting, especially its analogy of chance with length. I would have appreciated a connection earlier than Cardano, like some of the Greek philosophers even though I gladly discovered there that Cardano was not only responsible for the closed form solutions to the third degree equation. I would also have liked to see more comments on the vexing issue of *equiprobability*: we all spend (if not waste) hours in the classroom explaining to (or arguing with) students why their solution is not correct. And they sometimes never get it! [And we sometimes get it wrong as well..!] Why is such a simple concept so hard to explicit? In short, but this is nothing but a personal choice, I would have made the chapter more conceptual and less chronologically historical.

“Coherence is again a question of consistent evaluations of a betting arrangement that can be implemented in alternative ways.” (p.46)

The second chapter, about Frank Ramsey, is interesting, if only because it puts this “man of genius” back under the spotlight when he has all but been forgotten. (At least in my circles.) And for joining probability and utility together. And for postulating that probability can be derived from expectations rather than the opposite. Even though betting or gambling has a (negative) stigma in many cultures. At least gambling for money, since most of our actions involve some degree of betting. But not in a rational or reasoned manner. (Of course, this is not a mathematical but rather a psychological objection.) Further, the justification through betting is somewhat tautological in that it assumes probabilities are true probabilities from the start. For instance, the Dutch book example on p.39 produces a gain of .2 only if the probabilities are correct.

> gain=rep(0,1e4) > for (t in 1:1e4){ + p=rexp(3);p=p/sum(p) + gain[t]=(p[1]*(1-.6)+p[2]*(1-.2)+p[3]*(.9-1))/sum(p)} > hist(gain)

As I made it clear at the BFF4 conference last Spring, I now realise I have never really adhered to the Dutch book argument. This may be why I find the chapter somewhat unbalanced with not enough written on utilities and too much on Dutch books.

“The force of accumulating evidence made it less and less plausible to hold that subjective probability is, in general, approximate psychology.” (p.55)

A chapter on “psychology” may come as a surprise, but I feel *a posteriori* that it is appropriate. Most of it is about the Allais paradox. Plus entries on Ellesberg’s distinction between risk and uncertainty, with only the former being quantifiable by “objective” probabilities. And on Tversky’s and Kahneman’s distinction between heuristics, and the framing effect, i.e., how the way propositions are expressed impacts the choice of decision makers. However, it is leaving me unclear about the conclusion that the fact that people behave irrationally should not prevent a reliance on utility theory. Unclear because when taking actions involving other actors their potentially irrational choices should also be taken into account. (This is mostly nitpicking.)

“This is Bernoulli’s swindle. Try to make it precise and it falls apart. The conditional probabilities go in different directions, the desired intervals are of different quantities, and the desired probabilities are different probabilities.” (p.66)

The next chapter (“frequency”) is about Bernoulli’s Law of Large numbers and the stabilisation of frequencies, with von Mises making it the basis of his approach to probability. And Birkhoff’s extension which is capital for the development of stochastic processes. And later for MCMC. I like the notions of “disreputable twin” (p.63) and “Bernoulli’s swindle” about the idea that “chance is frequency”. The authors call the identification of probabilities as limits of frequencies Bernoulli‘s swindle, because it cannot handle zero probability events. With a nice link with the testing fallacy of equating rejection of the null with acceptance of the alternative. And an interesting description as to how Venn perceived the fallacy but could not overcome it: “If Venn’s theory appears to be full of holes, it is to his credit that he saw them himself.” The description of von Mises’ Kollectiven [and the welcome intervention of Abraham Wald] clarifies my previous and partial understanding of the notion, although I am unsure it is that clear for all potential readers. I also appreciate the connection with the very notion of *randomness* which has not yet found I fear a satisfactory definition. This chapter asks more (interesting) questions than it brings answers (to those or others). But enough, this is a brilliant chapter!

“…a random variable, the notion that Kac found mysterious in early expositions of probability theory.” (p.87)

Chapter 5 (“mathematics”) is very important [from my perspective] in that it justifies the necessity to associate measure theory with probability if one wishes to evolve further than urns and dices. To entitle Kolmogorov to posit his axioms of probability. And to define properly conditional probabilities as random variables (as my third students fail to realise). I enjoyed very much reading this chapter, but it may prove difficult to read for readers with no or little background in measure (although some advanced mathematical details have vanished from the published version). Still, this chapter constitutes a strong argument for preserving measure theory courses in graduate programs. As an aside, I find it amazing that mathematicians (even Kac!) had not at first realised the connection between measure theory and probability (p.84), but maybe not so amazing given the difficulty many still have with the notion of conditional probability. (Now, I would have liked to see some description of Borel’s paradox when it is mentioned (p.89).

“Nothing hangs on a flat prior (…) Nothing hangs on a unique quantification of ignorance.” (p.115)

The following chapter (“inverse inference”) is about Thomas Bayes and his posthumous theorem, with an introduction setting the theorem at the centre of the Hume-Price-Bayes triangle. (It is nice that the authors include a picture of the original version of the essay, as the initial title is much more explicit than the published version!) A short coverage, in tune with the fact that Bayes only contributed a twenty-plus paper to the field. And to be logically followed by a second part [formerly another chapter] on Pierre-Simon Laplace, both parts focussing on the selection of prior distributions on the probability of a Binomial (coin tossing) distribution. Emerging into a discussion of the position of statistics within or even outside mathematics. (And the assertion that Fisher was the Einstein of Statistics on p.120 may be disputed by many readers!)

“So it is perfectly legitimate to use Bayes’ mathematics even if we believe that chance does not exist.” (p.124)

The seventh chapter is about Bruno de Finetti with his astounding representation of exchangeable sequences as being mixtures of iid sequences. Defining an implicit prior on the side. While the description sticks to binary events, it gets quickly more advanced with the notion of partial and Markov exchangeability. With the most interesting connection between those exchangeabilities and sufficiency. (I would however disagree with the statement that “Bayes was the father of parametric Bayesian analysis” [p.133] as this is extrapolating too much from the Essay.) My next remark may be non-sensical, but I would have welcomed an entry at the end of the chapter on cases where the exchangeability representation fails, for instance those cases when there is no sufficiency structure to exploit in the model. A bonus to the chapter is a description of Birkhoff’s ergodic theorem “as a generalisation of de Finetti” (p..134-136), plus half a dozen pages of appendices on more technical aspects of de Finetti’s theorem.

“We want random sequences to pass all tests of randomness, with tests being computationally implemented”. (p.151)

The eighth chapter (“algorithmic randomness”) comes (again!) as a surprise as it centres on the character of Per Martin-Löf who is little known in statistics circles. (The chapter starts with a picture of him with the iconic Oberwolfach sculpture in the background.) Martin-Löf’s work concentrates on the notion of randomness, in a mathematical rather than probabilistic sense, and on the algorithmic consequences. I like very much the section on random generators. Including a mention of our old friend RANDU, the 16 planes random generator! This chapter connects with Chapter 4 since von Mises also attempted to define a random sequence. To the point it feels slightly repetitive (for instance Jean Ville is mentioned in rather similar terms in both chapters). Martin-Löf’s central notion is computability, which forces us to visit Turing’s machine. And its role in the undecidability of some logical statements. And Church’s recursive functions. (With a link not exploited here to the notion of probabilistic programming, where one language is actually named Church, after Alonzo Church.) Back to Martin-Löf, (I do not see how his test for randomness can be implemented on a real machine as the whole test requires going through the entire sequence: since this notion connects with von Mises’ Kollektivs, I am missing the point!) And then Kolmororov is brought back with his own notion of complexity (which is also Chaitin’s and Solomonov’s). Overall this is a pretty hard chapter both because of the notions it introduces and because I do not feel it is completely conclusive about the notion(s) of randomness. A side remark about casino hustlers and their “exploitation” of weak random generators: I believe Jeff Rosenthal has a similar if maybe simpler story in his book about Canadian lotteries.

“Does quantum mechanics need a different notion of probability? We think not.” (p.180)

The penultimate chapter is about Boltzmann and the notion of “physical chance”. Or statistical physics. A story that involves Zermelo and Poincaré, And Gibbs, Maxwell and the Ehrenfests. The discussion focus on the definition of probability in a thermodynamic setting, opposing time frequencies to space frequencies. Which requires ergodicity and hence Birkhoff [no surprise, this is about ergodicity!] as well as von Neumann. This reaches a point where conjectures in the theory are yet open. What I always (if presumably naïvely) find fascinating in this topic is the fact that ergodicity operates without requiring randomness. Dynamical systems can enjoy ergodic theorem, while being completely deterministic.) This chapter also discusses quantum mechanics, which main tenet requires probability. Which needs to be defined, from a frequency or a subjective perspective. And the Bernoulli shift that brings us back to random generators. The authors briefly mention the Einstein-Podolsky-Rosen paradox, which sounds more metaphysical than mathematical in my opinion, although they get to great details to explain Bell’s conclusion that quantum theory leads to a mathematical impossibility (but they lost me along the way). Except that we “are left with quantum probabilities” (p.183). And the chapter leaves me still uncertain as to why statistical mechanics carries the label *statistical*. As it does not seem to involve inference at all.

“If you don’t like calling these ignorance priors on the ground that they may be sharply peaked, call them nondogmatic priors or skeptical priors, because these priors are quite in the spirit of ancient skepticism.” (p.199)

And then the last chapter (“induction”) brings us back to Hume and the 18th Century, where somehow “everything” [including statistics] started! Except that Hume’s strong scepticism (or skepticism) makes induction seemingly impossible. (A perspective with which I agree to some extent, if not to Keynes’ extreme version, when considering for instance financial time series as stationary. And a reason why I do not see the criticisms contained in the Black Swan as pertinent because they savage normality while accepting stationarity.) The chapter rediscusses Bayes’ and Laplace’s contributions to inference as well, challenging Hume’s conclusion of the impossibility to finer. Even though the representation of ignorance is not unique (p.199). And the authors call again for de Finetti’s representation theorem as bypassing the issue of whether or not there is such a thing as chance. And escaping inductive scepticism. (The section about Goodman’s grue hypothesis is somewhat distracting, maybe because I have always found it quite artificial and based on a linguistic pun rather than a logical contradiction.) The part about (Richard) Jeffrey is quite new to me but ends up quite abruptly! Similarly about Popper and his exclusion of induction. From this chapter, I appreciated very much the section on skeptical priors and its analysis from a meta-probabilist perspective.

There is no conclusion to the book, but to end up with a chapter on induction seems quite appropriate. (But there is an appendix as a probability tutorial, mentioning Monte Carlo resolutions. Plus notes on all chapters. And a commented bibliography.) Definitely recommended!

*[Disclaimer about potential self-plagiarism: this post or an edited version will eventually appear in my Books Review section in CHANCE. As appropriate for a book about Chance!]*

## failures and uses of Jaynes’ principle of transformation groups

Posted in Books, Kids, R, Statistics, University life with tags Bertrand's paradox, E.T. Jaynes, Henri Poincaré, Joseph Bertrand, randomness on April 14, 2015 by xi'an**T**his paper by Alon Drory was arXived last week when I was at Columbia. It reassesses Jaynes’ resolution of Bertrand’s paradox, which finds three different probabilities for a given geometric event depending on the underlying σ-algebra (or definition of randomness!). Both Poincaré and Jaynes argued against Bertrand that there was only one acceptable solution under symmetry properties. The author of this paper, Alon Drory, argues this is not the case!

“…contrary to Jaynes’ assertion, each of the classical three solutions of Bertrand’s problem (and additional ones as well!) can be derived by the principle of transformation groups, using the exact same symmetries, namely rotational, scaling and translational invariance.”

Drory rephrases as follows: “In a circle, select at random a chord that is not a diameter. What is the probability that its length is greater than the side of the equilateral triangle inscribed in the circle?”. Jaynes’ solution is indifferent to the orientation of one observer wrt the circle, to the radius of the circle, and to the location of the centre. The later is the one most discussed by Drory, as he argued that it does not involve an observer but the random experiment itself and relies on a specific version of straw throws in Jaynes’ argument. Meaning other versions are also available. This reminded me of an earlier post on Buffon’s needle and on the different versions of the needle being thrown over the floor. Therein reflecting on the connection with Bertrand’s paradox. And running some further R experiments. Drory’s alternative to Jaynes’ manner of throwing straws is to impale them on darts and throw the darts first! (Which is the same as one of my needle solutions.)

“…the principle of transformation groups does not make the problem well-posed, and well-posing strategies that rely on such symmetry considerations ought therefore to be rejected.”

In short, the conclusion of the paper is that there is an indeterminacy in Bertrand’s problem that allows several resolutions under the principle of indifference that end up with a large range of probabilities, thus siding with Bertrand rather than Jaynes.

## randomness in coin tosses and last digits of prime numbers

Posted in Books, Kids, R, Statistics, University life with tags Benford's Law, coin tossing, prime numbers, randomness on October 7, 2014 by xi'an**A** rather intriguing note that was arXived last week: it is essentially one page long and it compares the power law of the frequency range for the Bernoulli experiment with the power law of the frequency range for the distribution of the last digits of the first 10,000 prime numbers to conclude that the power is about the same. With a very long introduction about the nature of randomness that is unrelated with the experiment. And a call to a virtual coin toss website, instead of using R uniform generator… Actually the exact distribution is available, at least asymptotically, for the Bernoulli (coin tossing) case. Among other curiosities, a constant typo in the sign of the coefficient β for the power law. A limitation of the Bernoulli experiment to 10⁴ simulations, rather than the 10⁵ used for the prime numbers. And a conclusion that the distribution of the end digits is truly uniform which relates only to this single experiment!

## random generators… unfit for ESP testing?!

Posted in Books, Statistics with tags Birmingham, DieHard, ESP, hardware random generator, PRNG, pseudo-random generator, random simulation, randomness on September 10, 2014 by xi'an

“The termpsidenotes anomalous processes of information or energy transfer that are currently unexplained in terms of known physical or biological mechanisms.”

**W**hen re-reading [in the taxi to Birmingham airport] Bem’s piece on “significant” ESP tests, I came upon the following hilarious part that I could not let pass:

“For most psychological experiments, a random number table or the random function built into most programming languages provides an adequate tool for randomly assigning participants to conditions or sequencing stimulus presentations. For both methodological and conceptual reasons, however, psi researchers have paid much closer attention to issues of randomization.

At the methodological level, the problem is that the random functions included in most computer languages are not very good in that they fail one or more of the mathematical tests used to assess the randomness of a sequence of numbers (L’Ecuyer, 2001), such as Marsaglia’s rigorous Diehard Battery of Tests of Randomness (1995). Such random functions are sometimes called pseudo random number generators (PRNGs) because they [are] not random in the sense of being indeterminate because once the initial starting number (the seed) is set, all future numbers in the sequence are fully determined.”

**W**ell, pseudo-random generators included in all modern computer languages that I know have passed tests like diehard. It would be immensely useful to learn of counterexamples as those using the corresponding language should be warned!!!

“In contrast, a hardware-based or “true” RNG is based on a physical process, such as radioactive decay or diode noise, and the sequence of numbers is indeterminate in the quantum mechanical sense. This does not in itself guarantee that the resulting sequence of numbers can pass all the mathematical tests of randomness (…) Both Marsaglia’s own PRNG algorithm and the “true” hardware-based Araneus Alea I RNG used in our experiments pass all his diehard tests (…) At the conceptual level, the choice of a PRNG or a hardware-based RNG bears on the interpretation of positive findings. In the present context, it bears on my claim that the experiments reported in this article provide evidence for precognition or retroactive influence.”

**T**here is no [probabilistic] validity in the claim that hardware random generators are more random than pseudo-random ones. Hardware generators may be unpredictable even by the hardware conceptor, but the only way to check they produce generations from a uniform distribution follows exactly the same pattern as for PRNG. And the lack of reproducibility of the outcome makes it impossible to check the reproducibility of the study. But here comes the best part of the story!

“If an algorithm-based PRNG is used to determine the successive left-right positions of the target pictures, then the computer already “knows” the upcoming random number before the participant makes his or her response; in fact, once the initial seed number is generated, the computer implicitly knows the entire sequence of left/right positions. As a result, this information is potentially available to the participant through real-time clairvoyance, permitting us to reject the more extraordinary claim that the direction of the causal arrow has actually been reversed.”

**E**xtraordinary indeed… But not more extraordinary than conceiving that a [psychic] participant in the experiment may “see” the whole sequence of random numbers!

“In contrast, if a true hardware-based RNG is used to determine the left/right positions, the next number in the sequence is indeterminate until it is actually generated by the quantum physical process embedded in the RNG, thereby ruling out the clairvoyance alternative. This argues for using a true RNG to demonstrate precognition or retroactive influence. But alas, the use of a true RNG opens the door to the psychokinesis interpretation: The participant might be influencing the placement of the upcoming target rather than perceiving it, a possibility supported by a body of empirical evidence testing psychokinesis with true RNGs (Radin, 2006, pp.154–160).”

**G**ood! I was just about to make the very same objection! If someone can predict the whole sequence of [extremely long integer] values of a PRNG, it gets hardly more irrational to imagine that he or she can mentally impact a quantum mechanics event. (And hopefully save Schröninger’s cat in the process.) Obviously, it begets the question as to how a subject could forecast a location of the picture that depends on the random generation but not forecast the result of the random generation.

“Like the clairvoyance interpretation, the psychokinesis interpretation also permits us to reject the claim that the direction of the causal arrow has been reversed. Ironically, the psychokinesis alternative can be ruled out by using a PRNG, which is immune to psychokinesis because the sequence of numbers is fully determined and can even be checked after the fact to confirm that its algorithm has not been perturbed. Over the course of our research program—and within the experiment just reported—we have obtained positive results using both PRNGs and a true RNG, arguably leaving precognition/reversed causality the only nonartifactual interpretation that can account for all the positive results.”

**T**his is getting rather confusing. Avoid using a PRNG for fear the subject infers about the sequence and avoid using a RNG for fear of the subject tempering with the physical generator. An omniscient psychic would be able to hand both types of generators, wouldn’t he or she!?!

“This still leaves open the artifactual alternative that the output from the RNG is producing inadequately randomized sequences containing patterns that fortuitously match participants’ response biases.”

**T**his objection shows how little confidence the author has in the randomness tests he previously mentioned: a proper random generator is not *inadequately* *randomized*. And if chance only rather than psychic powers is involved, there is no explanation for the match with the participants’ response. Unless those participants are so clever as to detect the flaws in the generator…

“In the present experiment, this possibility is ruled out by the twin findings that erotic targets were detected significantly more frequently than randomly interspersed nonerotic targets and that the nonerotic targets themselves were not detected significantly more frequently than chance. Nevertheless, for some of the other experiments reported in this article, it would be useful to have more general assurance that there are not patterns in the left/right placements of the targets that might correlate with response biases of participants. For this purpose, Lise Wallach, Professor of Psychology at Duke University, suggested that I run a virtual control experiment using random inputs in place of human participants.”

**A**bsolutely brilliant! This test replacing the participants with random generators has shown that the subjects’ answers do not correspond to an iid sequence from a uniform distribution. It would indeed require great psychic powers to reproduce a perfectly iid U(0,1) sequence! And the participants were warned about the experiment so naturally expected to see patterns in the sequence of placements.

## Le Monde sans puzzle

Posted in Books, Kids, Statistics, University life with tags Alan Turing, DieHard, George Marsaglia, Jean-Paul Delahaye, Le Monde, mathematical puzzle, pseudo-random generator, randomness on June 17, 2014 by xi'an**T**his week, Le Monde mathematical puzzle: is purely geometric, hence inappropriate for an R resolution. In the Science & Médecine leaflet, there is however an interesting central page about random generators, from the multiple usages of those in daily life to the consequences of poor generators on cryptography and data safety. The article is compiling an interview of Jean-Paul Delahaye on the topic with recent illustrations from cybersecurity. One final section gets rather incomprehensible: when discussing the dangers of seed generation, it states that “a poor management of the entropy means that an hacker can saturate the seed and take over the original randomness, weakening the whole system”. I am sure there is something real behind the imagery, but this does not make sense… Another insert mentions a possible random generator built out of the light detectors on a smartphone. And quantum physics. The society IDQ can indeed produce ultra-rapid random generators that way. And it also ran randomness tests summarised here. Using in particular George Marsaglia’s diehard battery.

**A**nother column report that a robot passed the Turing test last week, on Turing‘s death anniversary. Meaning that 33% of the jury was convinced the robot’s answers were given by a human. This reminded me of the Most Human Human book sent to me by my friends from BYU. (A marginalia found in Le Monde is that the test was organised by Kevin Warwick…from the University of Coventry, a funny reversal of the University of Warwick sitting in Coventry! However, checking on his website showed that he has and had no affiliation with this university, being at the University of Reading instead.)

## Foundations of Statistical Algorithms [book review]

Posted in Books, Linux, R, Statistics, University life with tags big data, GPU, Hadoop, MapReduce, optimisation, parallelisation, R, R package, random number generation, randomness, scalability, simulation, statistical algorithms, statistical computing on February 28, 2014 by xi'an**T**here is computational statistics and there is statistical computing. And then there is statistical algorithmic. Not the same thing, by far. This 2014 book by Weihs, Mersman and Ligges, from TU Dortmund, the later being also a member of the R Core team, stands at one end of this wide spectrum of techniques required by modern statistical analysis. In short, it provides the necessary skills to construct statistical algorithms and hence to contribute to statistical computing. And I wish I had the luxury to teach from Foundations of Statistical Algorithms to my graduate students, if only we could afford an extra yearly course…

“Our aim is to enable the reader (…) to quickly understand the main ideas of modern numerical algorithms [rather] than having to memorize the current, and soon to be outdated, set of popular algorithms from computational statistics.”(p.1)

**T**he book is built around the above aim, first presenting the reasons why computers can produce answers different from what we want, using least squares as a mean to check for (in)stability, then second establishing the ground forFishman Monte Carlo methods by discussing (pseudo-)random generation, including MCMC algorithms, before moving in third to bootstrap and resampling techniques, and concluding with parallelisation and scalability. The text is highly structured, with frequent summaries, a division of chapters all the way down to sub-sub-sub-sections, an R implementation section in each chapter, and a few exercises. Continue reading