## In Bayesian statistics, data is considered nonrandom…

Posted in Books, Statistics, University life with tags , , , , , on July 12, 2021 by xi'an

A rather weird question popped up on X validated, namely why does Bayesian analysis rely on a sampling distribution if the data is nonrandom. While a given sample is is indeed a deterministic object and hence nonrandom from this perspective!, I replied that on the opposite Bayesian analysis was setting the observed data as the realisation of a random variable in order to condition upon this realisation to construct a posterior distribution on the parameter. Which is quite different from calling it nonrandom! But, presumably putting too much meaning and spending too much time on this query, I remain somewhat bemused by what line of thought led to this question…

## Bayes factors revisited

Posted in Books, Mountains, pictures, Statistics, Travel, University life with tags , , , , , , , , , on March 22, 2021 by xi'an

“Bayes factor analyses are highly sensitive to and crucially depend on prior assumptions about model parameters (…) Note that the dependency of Bayes factors on the prior goes beyond the dependency of the posterior on the prior. Importantly, for most interesting problems and models, Bayes factors cannot be computed analytically.”

Daniel J. Schad, Bruno Nicenboim, Paul-Christian Bürkner, Michael Betancourt, Shravan Vasishth have just arXived a massive document on the Bayes factor, worrying about the computation of this common tool, but also at the variability of decisions based on Bayes factors, e.g., stressing correctly that

“…we should not confuse inferences with decisions. Bayes factors provide inference on hypotheses. However, to obtain discrete decisions (…) from continuous inferences in a principled way requires utility functions. Common decision heuristics (e.g., using Bayes factor larger than 10 as a discovery threshold) do not provide a principled way to perform decisions, but are merely heuristic conventions.”

The text is long and at times meandering (at least in the sections I read), while trying a wee bit too hard to bring up the advantages of using Bayes factors versus frequentist or likelihood solutions. (The likelihood ratio being presented as a “frequentist” solution, which I think is an incorrect characterisation.) For instance, the starting point of preferring a model with a higher marginal likelihood is presented as an evidence (oops!) rather than argumented. Since this quantity depends on both the prior and the likelihood, it being high or low is impacted by both. One could then argue that using its numerical value as an absolute criterion amounts to selecting the prior a posteriori as much as checking the fit to the data! The paper also resorts to the Occam’s razor argument, which I wish we could omit, as it is a vague criterion, wide open to misappropriation. It is also qualitative, rather than quantitative, hence does not help in calibrating the Bayes factor.

Concerning the actual computation of the Bayes factor, an issue that has always been a concern and a research topic for me, the authors consider only two “very common methods”, the Savage–Dickey density ratio method and bridge sampling. We discussed the shortcomings of the Savage–Dickey density ratio method with Jean-Michel Marin about ten years ago. And while bridge sampling is an efficient approach when comparing models of the same dimension, I have reservations about this efficiency in other settings. Alternative approaches like importance nested sampling, noise contrasting estimation or SMC samplers are often performing quite efficiently as normalising constant approximations. (Not to mention our version of harmonic mean estimator with HPD support.)

Simulation-based inference is based on the notion that simulated data can be produced from the predictive distributions. Reminding me of ABC model choice to some extent. But I am uncertain this approach can be used to calibrate the decision procedure to select the most appropriate model. We thought about using this approach in our testing by mixture paper and it is favouring the more complex of the two models. This seems also to occur for the example behind Figure 5 in the paper.

Two other points: first, the paper does not consider the important issue with improper priors, which are not rigorously compatible with Bayes factors, as I discussed often in the past. And second, Bayes factors are not truly Bayesian decision procedures, since they remove the prior weights on the models, thus the mention of utility functions therein seems inappropriate unless a genuine utility function can be produced.

## Bayesian sufficiency

Posted in Books, Kids, Statistics with tags , , , , , , , , , on February 12, 2021 by xi'an

“During the past seven decades, an astonishingly large amount of effort and ingenuity has gone into the search fpr resonable answers to this question.” D. Basu

Induced by a vaguely related question on X validated, I re-read Basu’s 1977 great JASA paper on the elimination of nuisance parameters. Besides the limitations of competing definitions of conditional, partial, marginal sufficiency for the parameter of interest,  Basu discusses various notions of Bayesian (partial) sufficiency.

“After a long journey through a forest of confusing ideas and examples, we seem to have lost our way.” D. Basu

Starting with Kolmogorov’s idea (published during WW II) to impose to all marginal posteriors on the parameter of interest θ to only depend on a statistic S(x). But having to hold for all priors cancels the notion as the statistic need be sufficient jointly for θ and σ, as shown by Hájek in the early 1960’s. Following this attempt, Raiffa and Schlaifer then introduced a more restricted class of priors, namely where nuisance and interest are a priori independent. In which case a conditional factorisation theorem is a sufficient (!) condition for this Q-sufficiency.  But not necessary as shown by the N(θ·σ, 1) counter-example (when σ=±1 and θ>0). [When the prior on σ is uniform, the absolute average is Q-sufficient but is this a positive feature?] This choice of prior separation is somewhat perplexing in that it does not hold under reparameterisation.

Basu ends up with three challenges, including the multinomial M(θ·σ,½(1-θ)·(1+σ),½(1+θ)·(1-σ)), with (n¹,n²,n³) as a minimal sufficient statistic. And the joint observation of an Exponential Exp(θ) translated by σ and of an Exponential Exp(σ) translated by -θ, where the prior on σ gets eliminated in the marginal on θ.

## a case for Bayesian deep learnin

Posted in Books, pictures, Statistics, Travel, University life with tags , , , , , , , , , , on September 30, 2020 by xi'an

Andrew Wilson wrote a piece about Bayesian deep learning last winter. Which I just read. It starts with the (posterior) predictive distribution being the core of Bayesian model evaluation or of model (epistemic) uncertainty.

“On the other hand, a flat prior may have a major effect on marginalization.”

Interesting sentence, as, from my viewpoint, using a flat prior is a no-no when running model evaluation since the marginal likelihood (or evidence) is no longer a probability density. (Check Lindley-Jeffreys’ paradox in this tribune.) The author then goes for an argument in favour of a Bayesian approach to deep neural networks for the reason that data cannot be informative on every parameter in the network, which should then be integrated out wrt a prior. He also draws a parallel between deep ensemble learning, where random initialisations produce different fits, with posterior distributions, although the equivalent to the prior distribution in an optimisation exercise is somewhat vague.

“…we do not need samples from a posterior, or even a faithful approximation to the posterior. We need to evaluate the posterior in places that will make the greatest contributions to the [posterior predictive].”

The paper also contains an interesting point distinguishing between priors over parameters and priors over functions, ony the later mattering for prediction. Which must be structured enough to compensate for the lack of data information about most aspects of the functions. The paper further discusses uninformative priors (over the parameters) in the O’Bayes sense as a default way to select priors. It is however unclear to me how this discussion accounts for the problems met in high dimensions by standard uninformative solutions. More aggressively penalising priors may be needed, as those found in high dimension variable selection. As in e.g. the 10⁷ dimensional space mentioned in the paper. Interesting read all in all!

## Mea Culpa

Posted in Statistics with tags , , , , , , , , , , , on April 10, 2020 by xi'an

[A quote from Jaynes about improper priors that I had missed in his book, Probability Theory.]

For many years, the present writer was caught in this error just as badly as anybody else, because Bayesian calculations with improper priors continued to give just the reasonable and clearly correct results that common sense demanded. So warnings about improper priors went unheeded; just that psychological phenomenon. Finally, it was the marginalization paradox that forced recognition that we had only been lucky in our choice of problems. If we wish to consider an improper prior, the only correct way of doing it is to approach it as a well-defined limit of a sequence of proper priors. If the correct limiting procedure should yield an improper posterior pdf for some parameter α, then probability theory is telling us that the prior information and data are too meager to permit any inferences about α. Then the only remedy is to seek more data or more prior information; probability theory does not guarantee in advance that it will lead us to a useful answer to every conceivable question.Generally, the posterior pdf is better behaved than the prior because of the extra information in the likelihood function, and the correct limiting procedure yields a useful posterior pdf that is analytically simpler than any from a proper prior. The most universally useful results of Bayesian analysis obtained in the past are of this type, because they tended to be rather simple problems, in which the data were indeed so much more informative than the prior information that an improper prior gave a reasonable approximation – good enough for all practical purposes – to the strictly correct results (the two results agreed typically to six or more significant figures).

In the future, however, we cannot expect this to continue because the field is turning to more complex problems in which the prior information is essential and the solution is found by computer. In these cases it would be quite wrong to think of passing to an improper prior. That would lead usually to computer crashes; and, even if a crash is avoided, the conclusions would still be, almost always, quantitatively wrong. But, since likelihood functions are bounded, the analytical solution with proper priors is always guaranteed to converge properly to finite results; therefore it is always possible to write a computer program in such a way (avoid underflow, etc.) that it cannot crash when given proper priors. So, even if the criticisms of improper priors on grounds of marginalization were unjustified,it remains true that in the future we shall be concerned necessarily with proper priors.