**A**fter a rather intense period of new simulations and versions, Juong Een (Kate) Lee and I have now resubmitted our paper on (some) importance sampling schemes for evidence approximation in mixture models to Bayesian Analysis. There is no fundamental change in the new version but rather a more detailed description of what those importance schemes mean in practice. The original idea in the paper is to improve upon the Rao-Blackwellisation solution proposed by Berkoff et al. (2002) and later by Marin et al. (2005) to avoid the impact of label switching on Chib’s formula. The Rao-Blackwellisation consists in averaging over all permutations of the labels while the improvement relies on the elimination of useless permutations, namely those that produce a negligible conditional density in Chib’s (candidate’s) formula. While the improvement implies truncated the overall sum and hence induces a potential bias (which was the concern of one referee), the determination of the irrelevant permutations after relabelling next to a single mode does not appear to cause any bias, while reducing the computational overload. Referees also made us aware of many recent proposals that conduct to different evidence approximations, albeit not directly related with our purpose. (One was Rodrigues and Walker, 2014, discussed and commented in a recent post.)

## Archive for Rao-Blackwellisation

## importance sampling schemes for evidence approximation [revised]

Posted in Statistics, University life with tags Andrew Gelman, candidate approximation, Chib's approximation, evidence, finite mixtures, label switching, permutations, Rao-Blackwellisation on November 18, 2014 by xi'an## density normalization for MCMC algorithms

Posted in Statistics, University life with tags harmonic mean estimator, importance sampling, Laplace approximation, MCMC, MCQMC, Monte Carlo Statistical Methods, normalising constant, Rao-Blackwellisation, untractable normalizing constant on November 6, 2014 by xi'an**A**nother paper addressing the estimation of the normalising constant and the wealth of available solutions just came out on arXiv, with the full title of “Target density normalization for Markov chain Monte Carlo algorithms“, written by Allen Caldwell and Chang Liu. (I became aware of it by courtesy of Ewan Cameron, as it appeared in the physics section of arXiv. It is actually a wee bit annoying that papers in the subcategory “Data Analysis, Statistics and Probability” of physics do not get an automated reposting on the statistics lists…)

In this paper, the authors compare three approaches to the problem of finding

when the density f is unormalised, i.e., in more formal terms, when f is proportional to a probability density (and available):

- an “arithmetic mean”, which is an importance sampler based on (a) reducing the integration volume to a neighbourhood ω of the global mode. This neighbourhood is chosen as an hypercube and the importance function turns out to be the uniform over this hypercube. The corresponding estimator is then a rescaled version of the average of f over uniform simulations in ω.
- an “harmonic mean”, of all choices!, with again an integration over the neighbourhood ω of the global mode in order to avoid the almost sure infinite variance of harmonic mean estimators.
- a Laplace approximation, using the target at the mode and the Hessian at the mode as well.

The paper then goes to comparing those three solutions on a few examples, demonstrating how the diameter of the hypercube can be calibrated towards a minimum (estimated) uncertainty. The rather anticlimactic conclusion is that the arithmetic mean is the most reliable solution as harmonic means may fail in larger dimension and more importantly fail to signal its failure, while Laplace approximations only approximate well quasi-Gaussian densities…

What I find most interesting in this paper is the idea of using only one part of the integration space to compute the integral, even though it is not exactly new. Focussing on a specific region ω has pros and cons, the pros being that the reduction to a modal region reduces needs for absolute MCMC convergence and helps in selecting alternative proposals and also prevents from the worst consequences of using a dreaded harmonic mean, the cons being that the region needs be well-identified, which means requirements on the MCMC kernel, and that the estimate is a product of two estimates, the frequency being driven by a Binomial noise. I also like very much the idea of calibrating the diameter Δof the hypercube ex-post by estimating the uncertainty.

As an aside, the paper mentions most of the alternative solutions I just presented in my Monte Carlo graduate course two days ago (like nested or bridge or Rao-Blackwellised sampling, including our proposal with Darren Wraith), but dismisses them as not “directly applicable in an MCMC setting”, i.e., without modifying this setting. I unsurprisingly dispute this labelling, both because something like the Laplace approximation requires extra-work on the MCMC output (and once done this work can lead to advanced Laplace methods like INLA) and because other methods could be considered as well (for instance, bridge sampling over several hypercubes). As shown in the recent paper by Mathieu Gerber and Nicolas Chopin (soon to be discussed at the RSS!), MCqMC has also become a feasible alternative that would compete well with the methods studied in this paper.

Overall, this is a paper that comes in a long list of papers on constant approximations. I do not find the Markov chain of MCMC aspect particularly compelling or specific, once the effective sample size is accounted for. It would be nice to find generic ways of optimising the visit to the hypercube ω *and* to estimate efficiently the weight of ω. The comparison is solely run over examples, but they all rely on a proper characterisation of the hypercube and the ability to simulate efficiently f over that hypercube.

## Combining Particle MCMC with Rao-Blackwellized Monte Carlo Data Association

Posted in Books, Statistics, University life with tags -Blackwellized Monte Carlo Data Association, bear, data association, Finland, MCMC, particle Gibbs sampler, pMCMC, prior-posterior discrepancy, Rao-Blackwellisation, simulation, target tracking, tiger, Western Ghats on October 10, 2014 by xi'an**T**his recently arXived paper by Juho Kokkala and Simo Särkkä mixes a whole lot of interesting topics, from particle MCMC and Rao-Blackwellisation to particle filters, Kalman filters, and even bear population estimation. The starting setup is the state-space hidden process models where particle filters are of use. And where Andrieu, Doucet and Hollenstein (2010) introduced their particle MCMC algorithms. Rao-Blackwellisation steps have been proposed in this setup in the original paper, as well as in the ensuing discussion, like recycling rejected parameters and associated particles. The beginning of the paper is a review of the literature in this area, in particular of the Rao*-Blackwellized Monte Carlo Data Association* algorithm developed by Särkkä et al. (2007), of which I was not aware previously. (I alas have not followed closely enough the filtering literature in the past years.) Targets evolve independently according to Gaussian dynamics.

In the description of the model (Section 3), I feel there are prerequisites on the model I did not have (and did not check in Särkkä et al., 2007), like the meaning of targets and measurements: it seems the model assumes each measurement corresponds to a given target. More details or an example would have helped. The extension against the existing appears to be the (major) step of including unknown parameters. Due to my lack of expertise in the domain, I have no notion of the existence of similar proposals in the literature, but handling unknown parameters is definitely of direct relevance for the statistical analysis of such problems!

The simulation experiment based on an Ornstein-Uhlenbeck model is somewhat anticlimactic in that the posterior on the mean reversion rate is essentially the prior, conveniently centred at the true value, while the others remain quite wide. It may be that the experiment was too ambitious in selecting 30 simultaneous targets with only a total of 150 observations. Without highly informative priors, my beotian reaction is to doubt the feasibility of the inference. In the case of the Finnish bear study, the huge discrepancy between priors and posteriors, as well as the significant difference between the forestry expert estimations and the model predictions should be discussed, if not addressed, possibly via a simulation using the posteriors as priors. Or maybe using a hierarchical Bayes model to gather a time-wise coherence in the number of bear families. (I wonder if this technique would apply to the type of data gathered by Mohan Delampady on the West Ghats tigers…)

Overall, I am slightly intrigued by the practice of running MCMC chains in parallel and merging the outcomes with no further processing. This assumes a lot in terms of convergence and mixing on all the chains. However, convergence is never directly addressed in the paper.

## efficient exploration of multi-modal posterior distributions

Posted in Books, Statistics, University life with tags acceptance probability, Metropolis-Hastings algorithms, multimodal target, population Monte Carlo, Rao-Blackwellisation on September 1, 2014 by xi'an**T**he title of this recent arXival had potential appeal, however the proposal ends up being rather straightforward and hence anti-climactic! The paper by Hu, Hendry and Heng proposes to run a mixture of proposals centred at the various modes of the target for an efficient exploration. This is a correct MCMC algorithm, granted!, but the requirement to know beforehand *all* the modes to be explored is self-defeating, since the major issue with MCMC is about modes that are omitted from the exploration and remain undetected throughout the simulation… As provided, this is a standard MCMC algorithm with no adaptive feature and I would rather suggest our population Monte Carlo version, given the available information. Another connection with population Monte Carlo is that I think the performances would improve by Rao-Blackwellising the acceptance rate, i.e. removing the conditioning on the (ancillary) component of the index. For PMC we proved that using the mixture proposal in the ratio led to an ideally minimal variance estimate and I do not see why randomising the acceptance ratio in the current case would bring any improvement.

## recycling accept-reject rejections

Posted in Statistics, University life with tags accept-reject algorithm, arXiv, auxiliary variable, Data augmentation, George Casella, intractable likelihood, Monte Carlo Statistical Methods, Rao-Blackwellisation, recycling, untractable normalizing constant on July 1, 2014 by xi'an**V**inayak Rao, Lizhen Lin and David Dunson just arXived a paper which proposes anew technique to handle intractable normalising constants. And which exact title is Data augmentation for models based on rejection sampling. (Paper that I read in the morning plane to B’ham, since this is one of my weeks in Warwick.) The central idea therein is that, if the sample density (*aka* likelihood) satisfies

where all terms but p are known in closed form, then completion by the rejected values of an hypothetical accept-reject algorithm−hypothetical in the sense that the data does not have to be produced by an accept-reject scheme but simply the above domination condition to hold−allows for a data augmentation scheme. Without requiring the missing normalising constant. Since the completed likelihood is

A closed-form, if not necessarily congenial, function.

**N**ow this is quite a different use of the “rejected values” from the accept reject algorithm when compared with our 1996 Biometrika paper on the Rao-Blackwellisation of accept-reject schemes (which, still, could have been mentioned there… Or Section 4.2 of Monte Carlo Statistical Methods. Rather than re-deriving the joint density of the augmented sample, “accepted+rejected”.)

**I**t is a neat idea in that it completely bypasses the approximation of the normalising constant. And avoids the somewhat delicate tuning of the auxiliary solution of Moller et al. (2006) The difficulty with this algorithm is however in finding an upper bound M on the unnormalised density f that is

- in closed form;
- with a manageable and tight enough “constant” M;
- compatible with running a posterior simulation conditional on the added rejections.

The paper seems to assume further that the bound M is independent from the current parameter value θ, at least as suggested by the notation (and Theorem 2), but this is not in the least necessary for the validation of the formal algorithm. Such a constraint would pull M higher, hence reducing the efficiency of the method. Actually the matrix Langevin distribution considered in the first example involves a bound that depends on the parameter κ.

**T**he paper includes a result (Theorem 2) on the uniform ergodicity that relies on heavy assumptions on the proposal distribution. And a rather surprising one, namely that the probability of *rejection* is bounded from below, i.e. calling for a *less* efficient proposal. Now it seems to me that a uniform ergodicity result holds as well when the probability of *acceptance* is bounded from below since, then, the event when no rejection occurs constitutes an atom from the augmented Markov chain viewpoint. There therefore occurs a renewal each time the rejected variable set ϒ is empty, and ergodicity ensues (Robert, 1995, *Statistical Science*).

**N**ote also that, despite the opposition raised by the authors, the method *per se* does constitute a pseudo-marginal technique à la Andrieu-Roberts (2009) since the independent completion by the (pseudo) rejected variables produces an unbiased estimator of the likelihood. It would thus be of interest to see how the recent evaluation tools of Andrieu and Vihola can assess the loss in efficiency induced by this estimation of the likelihood.

*Maybe some further experimental evidence tomorrow…*

## Bayesian multimodel inference by RJMCMC: A Gibbs sampling approach

Posted in Books, pictures, Statistics, Travel, University life with tags Dunedin, Gibbs sampling, model comparison, New Zealand, palette, Rao-Blackwellisation, RJMCMC on December 27, 2013 by xi'an**B**arker (from the lovely city of Dunedin) and Link published a paper in the American Statistician last September that I missed, as I missed their earlier email about the paper since it arrived The Day After… The paper is about a new specification of RJMCMC, almost twenty years after Peter Green’s (1995) introduction of the method. The authors use the notion of *a palette*, “from which all model specific parameters can be calculated” (in a deterministic way). One can see the palette ψ as an intermediary step in the move between two models. This reduces the number of bijections, if not the construction of the dreaded Jacobians!, but forces the construction of pseudo-priors on the unessential parts of ψ for *every* model. Because the dimension of ψ is fixed, a Gibbs sampling interleaving model index and palette value is then implementable. The conditional of the model index given the palette is available provided there are not too many models under competitions, with the probabilities recyclable towards a Rao-Blackwell approximation of the model probability. I wonder at whether or not another Rao-Blackwellisation is possible, namely to draw from all the simulated palettes a sample for the parameter of an arbitrarily chosen model.