Archive for BIRS

the year(s) with no conferences

Posted in Books, Mountains, pictures, Travel, University life with tags , , , , , , on March 21, 2020 by xi'an

This week, Nature has an article on “A year without conferences? How the coronavirus pandemic could change research”, where the journalist predicts a potential halt to scientific conferences. Taking as example the cancelled American Physical Society (APS) March Meeting, to quote

“many of them rapidly set up platforms to hold virtual sessions for the meeting, inviting their speakers to present by webcam or to upload their presentations to online repositories. Researchers who hadn’t been in a position to fly to Denver found themselves able to participate from afar in what became the Virtual APS March Meeting.”

On this same day I should have been traveling from Brussels to Grenoble for the ABC meeting there. Instead, I had a four day virtual panel meeting from home and there is no virtual version of the ABC in Gre[e]noble workshop. As no one seemed particularly eager to animate a few local talks with no guarantee of spectators. As things deteriorated to home confinement,  it was actually better not to spend more efforts on the project. Since this confinement is bound to last much longer, it would however become more obvious that the community and the academic societies need plan virtual conference and invent different channels to gather members and disseminate innovation.

an oldie but a goldie [jatp]

Posted in Mountains, pictures, Travel, University life with tags , , , , , , , , on March 19, 2020 by xi'an

BayesComp’20

Posted in Books, pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , , , , , , , , , , on January 10, 2020 by xi'an

First, I really have to congratulate my friend Jim Hobert for a great organisation of the meeting adopting my favourite minimalist principles (no name tag, no “goodies” apart from the conference schedule, no official talks). Without any pretense at objectivity, I also appreciated very much the range of topics and the sweet frustration of having to choose between two or three sessions each time. Here are some notes taken during some talks (with no implicit implication for the talks no mentioned, re. above frustration! as well as very short nights making sudden lapse in concentration highly likely).

On Day 1, Paul Fearnhead’s inaugural plenary talk was on continuous time Monte Carlo methods, mostly bouncy particle and zig-zag samplers, with a detailed explanation on the simulation of the switching times which likely brought the audience up to speed even if they had never heard of them. And an opening on PDMPs used as equivalents to reversible jump MCMC, reminding me of the continuous time (point process) solutions of Matthew Stephens for mixture inference (and of Preston, Ripley, Møller).

The same morn I heard of highly efficient techniques to handle very large matrices and p>n variables selections by Akihiko Nishimura and Ruth Baker on a delayed acceptance ABC, using a cheap proxy model. Somewhat different from indirect inference. I found the reliance on ESS somewhat puzzling given the intractability of the likelihood (and the low reliability of the frequency estimate) and the lack of connection with the “real” posterior. At the same ABC session, Umberto Picchini spoke on a joint work with Richard Everitt (Warwick) on linking ABC and pseudo-marginal MCMC by bootstrap. Actually, the notion of ABC likelihood was already proposed as pseudo-marginal ABC by Anthony Lee, Christophe Andrieu and Arnaud Doucet in the discussion of Fearnhead and Prangle (2012) but I wonder at the focus of being unbiased when the quantity is not the truth, i.e. the “real” likelihood. It would seem more appropriate to attempt better kernel estimates on the distribution of the summary itself. The same session also involved David Frazier who linked our work on ABC for misspecified models and an on-going investigation of synthetic likelihood.

Later, there was a surprise occurrence of the Bernoulli factory in a talk by Radu Herbei on Gaussian process priors with accept-reject algorithms, leading to exact MCMC, although the computing implementation remains uncertain. And several discussions during the poster session, incl. one on the planning of a 2021 workshop in Oaxaca centred on objective Bayes advances as we received acceptance of our proposal by BIRS today!

On Day 2, David Blei gave a plenary introduction to variational Bayes inference and latent Dirichlet allocations, somewhat too introductory for my taste although other participants enjoyed this exposition. He also mentioned a recent JASA paper on the frequentist consistency of variational Bayes that I should check. Speaking later with PhD students, they really enjoyed this opening on an area they did not know that well.

A talk by Kengo Kamatani (whom I visited last summer) on improved ergodicity rates for heavy tailed targets and Crank-NIcholson modifications to the random walk proposal (which uses an AR(1) representation instead of the random walk). With the clever idea of adding the scale of the proposal as an extra parameter with a prior of its own. Gaining one order of magnitude in the convergence speed (i.e. from d to 1 and from d² to d, where d is the dimension), which is quite impressive (and just published in JAP).Veronica Rockova linked Bayesian variable selection and machine learning via ABC, with conditions on the prior for model consistency. And a novel approach using part of the data to learn an ABC partial posterior, which reminded me of the partial  Bayes factors of the 1990’s although it is presumably unrelated. And a replacement of the original rejection ABC via multi-armed bandits, where each variable is represented by an arm, called ABC Bayesian forests. Recalling the simulation trick behind Thompson’s approach, reproduced for the inclusion or exclusion of variates and producing a fixed estimate for the (marginal) inclusion probabilities, which makes it sound like a prior-feeback form of empirical Bayes. Followed by a talk of Gregor Kastner on MCMC handling of large time series with specific priors and a massive number of parameters.

The afternoon also had a wealth of exciting talks and missed opportunities (in the other sessions!). Which ended up with a strong if unintended French bias since I listened to Christophe Andrieu, Gabriel Stolz, Umut Simsekli, and Manon Michel on different continuous time processes, with Umut linking GANs, multidimensional optimal transport, sliced-Wasserstein, generative models, and new stochastic differential equations. Manon Michel gave a highly intuitive talk on creating non-reversibility, getting rid of refreshment rates in PDMPs to kill any form of reversibility.

computational statistics and molecular simulation [18w5023]

Posted in pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , , , on November 19, 2018 by xi'an

The last day of the X fertilisation workshop at the casa matematicà Oaxaca, there were only three talks and only half of the participants. I lost the subtleties of the first talk by Andrea Agazzi on large deviations for chemical reactions, due to an emergency at work (Warwick). The second talk by Igor Barahona was somewhat disconnected from the rest of the conference, working on document textual analysis by way of algebraic data analysis (analyse des données) methods à la Benzécri. (Who was my office neighbour at Jussieu in the early 1990s.) In the last and final talk, Eric Vanden-Eijden made a link between importance sampling and PDMP, as an integral can be expressed via a trajectory of a path. A generalisation of path sampling, for almost any ODE. But also a competitor to nested sampling, waiting for the path to reach an Hamiltonian level, without some of the difficulties plaguing nested sampling like resampling. And involving continuous time processes. (Is there a continuous time version of ABC as well?!) Returning unbiased estimators of mean (the original integral) and variance. Example of a mixture example in dimension d=10 with k=50 components using only 100 paths.

computational statistics and molecular simulation [18w5023]

Posted in pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , , on November 16, 2018 by xi'an

This Thursday, our X fertilisation workshop at the interface between molecular dynamics and Monte Carlo statistical methods saw a wee bit of reduction in the audience as some participants had already left Oaxaca. Meaning they missed the talk of Christophe Andrieu on hypocoercivity which could have been another hand-on lecture, given the highly pedagogical contents of the talk. I had seen some parts of the talk in MCqMC 2018 in Rennes and at NUS, but still enjoyed the whole of it very much, and so did the audience given the induced discussion. For instance, previously, I had not seen the connection between the guided random walks of Gustafson and Diaconis, and continuous time processes like PDMP. Which Christophe also covered in his talk. (Also making me realise my colleague Jean Dolbeault in Dauphine was strongly involved in the theoretical analysis of PDMPs!) Then Samuel Power gave another perspective on PDMPs. With another augmentation, connected with time, what he calls trajectorial reversibility. This has the impact of diminishing the event rate, but creates some kind of reversibility which seems to go against the motivation for PDMPs. (Remember that all talks are available as videos on the BIRS webpage.) A remark in the talk worth reiterating is the importance of figuring out which kinds of approximations are acceptable in these approximations. Connecting somewhat with the next talk by Luc Rey-Bellet on a theory of robust approximations. In the sense of Poincaré, Gibbs, Bernstein, &tc. concentration inequalities and large deviations. With applications to rare events.The fourth and final “hand-on” session was run by Miranda Holmes-Certon on simulating under constraints. Motivated by research on colloids. For which the overdamp Langevin diffusion applies as an accurate model, surprisingly. Which makes a major change from the other talks [most of the workshop!] relying on this diffusion. (With an interesting intermede on molecular velcro made of DNA strands.) Connected with this example, exotic energy landscapes are better described by hard constraints. (Potentially interesting extension to the case when there are too many constraints to explore all of them?) Now, the definition of the measure projected on the manifold defined by the constraints is obviously an important step in simulating the distribution, which density is induced by the gradient of the constraints ∇q(x). The proposed algorithm is in the same spirit as the one presented by Tony the previous day, namely moving along the tangent space then on the normal space to get back to the manifold. A solution that causes issues when the gradient is (near) zero. A great hand-on session which induced massive feedback from the audience.

In the afternoon session, Gersende Fort gave a talk on a generalisation of the Wang-Landau algorithm, which modifies the true weights of the elements of a partition of the sampling space, to increase visits to low [probability] elements and jumps between modes. The idea is to rely on tempered versions of the original weights, learned by stochastic approximation. With an extra layer of adaptivity. Leading to an improvement with parameters that depends on the phase of the stochastic approximation. The second talk was by David Sanders on a recent paper in Chaos about importance sampling for rare events of (deterministic) billiard dynamics. With diffusive limits which tails are hard to evaluate, except by importance sampling. And the last talk of the day was by Anton Martinsson on simulated tempering for a molecular alignment problem. With weights of different temperatures proportional to the inverse of the corresponding normalising constants, which themselves can be learned by a form of bridge sampling  if I got it right.

On a very minor note, I heard at breakfast a pretty good story from a fellow participant having to give a talk at a conference that was moved to a very early time in the morning due to an official appearing at a later time and as a result “enjoying” a very small audience to the point that a cleaning lady appeared and started cleaning the board as she could not conceive the talks had already started! Reminding me of this picture at IHP.

Oaxaca sunrise [#2]

Posted in Mountains, pictures, Running with tags , , , , , , , on November 15, 2018 by xi'an

computational statistics and molecular simulation [18w5023]

Posted in Books, Kids, pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , , , , , , , , , , , , , , on November 15, 2018 by xi'an

 I truly missed the gist of the first talk of the Wednesday morning of our X fertilisation workshop by Jianfeng Lu partly due to notations, although the topic very much correlated to my interests like path sampling, with an augmented version of HMC using an auxiliary indicator. And mentions made of BAOAB. Next, Marcello Pereyra spoke about Bayesian image analysis, with the difficulty of setting a prior on an image. In case of astronomical images there are motivations for an L¹ penalisation sparse prior. Sampling is an issue. Moreau-Yoshida proximal optimisation is used instead, in connection with our MCMC survey published in Stats & Computing two years ago. Transferability was a new concept for me, as introduced by Kerrie Mengersen (QUT), to extrapolate an estimated model to another system without using the posterior as a prior. With a great interlude about the crown of thorns starfish killer robot! Rather a prior determination based on historical data, in connection with recent (2018) Technometrics and Bayesian Analysis papers towards rejecting non-plausible priors. Without reading the papers (!), and before discussing the matter with Kerrie, here or in Marseille, I wonder at which level of precision this can be conducted. The use of summary statistics for prior calibration gave the approach an ABC flavour.

The hand-on session was Jonathan Mattingly’s discussion of gerrymandering reflecting on his experience at court! Hard to beat for an engaging talk reaching between communities. As it happens I discussed the original paper last year. Of course it was much more exciting to listen to Jonathan explaining his vision of the problem! Too bad I “had” to leave before the end for a [most enjoyable] rock climbing afternoon… To be continued at the dinner table! (Plus we got the complete explanation of the term gerrymandering, including this salamander rendering of the first identified as gerrymandered district!)