Archive for computational statistics

data science [down] under the hood [webinar]

Posted in Statistics with tags , , , , , , on June 21, 2020 by xi'an

a computational approach to statistical learning [book review]

Posted in Books, R, Statistics, University life with tags , , , , , , , , , , , , , , , , on April 15, 2020 by xi'an

This book was sent to me by CRC Press for review for CHANCE. I read it over a few mornings while [confined] at home and found it much more computational than statistical. In the sense that the authors go quite thoroughly into the construction of standard learning procedures, including home-made R codes that obviously help in understanding the nitty-gritty of these procedures, what they call try and tell, but that the statistical meaning and uncertainty of these procedures remain barely touched by the book. This is not uncommon to the machine-learning literature where prediction error on the testing data often appears to be the final goal but this is not so traditionally statistical. The authors introduce their work as (a computational?) supplementary to Elements of Statistical Learning, although I would find it hard to either squeeze both books into one semester or dedicate two semesters on the topic, especially at the undergraduate level.

Each chapter includes an extended analysis of a specific dataset and this is an asset of the book. If sometimes over-reaching in selling the predictive power of the procedures. Printed extensive R scripts may prove tiresome in the long run, at least to me, but this may simply be a generational gap! And the learning models are mostly unidimensional, see eg the chapter on linear smoothers with imho a profusion of methods. (Could someone please explain the point of Figure 4.9 to me?) The chapter on neural networks has a fairly intuitive introduction that should reach fresh readers. Although meeting the handwritten digit data made me shift back to the late 1980’s, when my wife was working on automatic character recognition. But I found the visualisation of the learning weights for character classification hinting at their shape (p.254) most alluring!

Among the things I am missing when reading through this book, a life-line on the meaning of a statistical model beyond prediction, attention to misspecification, uncertainty and variability, especially when reaching outside the range of the learning data, and further especially when returning regression outputs with significance stars, discussions on the assessment tools like the distance used in the objective function (for instance lacking in scale invariance when adding errors on the regression coefficients) or the unprincipled multiplication of calibration parameters, some asymptotics, at least one remark on the information loss due to splitting the data into chunks, giving some (asymptotic) substance when using “consistent”, waiting for a single page 319 to see the “data quality issues” being mentioned. While the methodology is defended by algebraic and calculus arguments, there is very little on the probability side, which explains why the authors consider that the students need “be familiar  with the concepts of expectation, bias and variance”. And only that. A few paragraphs on the Bayesian approach are doing more harm than well, especially with so little background in probability and statistics.

The book possibly contains the most unusual introduction to the linear model I can remember reading: Coefficients as derivatives… Followed by a very detailed coverage of matrix inversion and singular value decomposition. (Would not sound like the #1 priority were I to give such a course.)

The inevitable typo “the the” was found on page 37! A less common typo was Jensen’s inequality spelled as “Jenson’s inequality”. Both in the text (p.157) and in the index, followed by a repetition of the same formula in (6.8) and (6.9). A “stwart” (p.179) that made me search a while for this unknown verb. Another typo in the Nadaraya-Watson kernel regression, when the bandwidth h suddenly turns into n (and I had to check twice because of my poor eyesight!). An unusual use of partition where the sets in the partition are called partitions themselves. Similarly, fluctuating use of dots for products in dimension one, including a form of ⊗ for matricial product (in equation (8.25)) followed next page by the notation for the Hadamard product. I also suspect the matrix K in (8.68) is missing 1’s or am missing the point, since K is the number of kernels on the next page, just after a picture of the Eiffel Tower…) A surprising number of references for an undergraduate textbook, with authors sometimes cited with full name and sometimes cited with last name. And technical reports that do not belong to this level of books. Let me add the pedant remark that Conan Doyle wrote more novels “that do not include his character Sherlock Holmes” than novels which do include Sherlock.

[Disclaimer about potential self-plagiarism: this post or an edited version will eventually appear in my Books Review section in CHANCE.]

COMPSTAT 2020 moved to 2021

Posted in Statistics with tags , , , , , , , on April 2, 2020 by xi'an

Just received the news that the COMPSTAT 2020 meeting that was supposed to take place in Bologna, late August 2020, has been postponed by a year. Meaning that, reasonably, all future COMPSTAT conferences are postponed by a year. This gap policy should apply to all conference cycles, I believe.

Rao-Blackwellisation, a review in the making

Posted in Statistics with tags , , , , , , , , , , on March 17, 2020 by xi'an

Recently, I have been contacted by a mainstream statistics journal to write a review of Rao-Blackwellisation techniques in computational statistics, in connection with an issue celebrating C.R. Rao’s 100th birthday. As many many techniques can be interpreted as weak forms of Rao-Blackwellisation, as e.g. all auxiliary variable approaches, I am clearly facing an abundance of riches and would thus welcome suggestions from Og’s readers on the major advances in Monte Carlo methods that can be connected with the Rao-Blackwell-Kolmogorov theorem. (On the personal and anecdotal side, I only met C.R. Rao once, in 1988, when he came for a seminar at Purdue University where I was spending the year.)

MCMC, with common misunderstandings

Posted in Books, pictures, R, Statistics, University life with tags , , , , , , , , , , , , on January 27, 2020 by xi'an

As I was asked to write a chapter on MCMC methods for an incoming Handbook of Computational Statistics and Data Science, published by Wiley, rather than cautiously declining!, I decided to recycle the answers I wrote on X validated to what I considered to be the most characteristic misunderstandings about MCMC and other computing methods, using as background the introduction produced by Wu Changye in his PhD thesis. Waiting for the opinion of the editors of the Handbook on this Q&A style. The outcome is certainly lighter than other recent surveys like the one we wrote with Peter Green, Krys Latuszinski, and Marcelo Pereyra, for Statistics and Computing, or the one with Victor Elvira, Nick Tawn, and Changye Wu.