Archive for University of Toronto

remembering Joyce Fienberg through Steve’s words

Posted in Statistics with tags , , , , , , on October 28, 2018 by xi'an

I just learned the horrific news that Joyce Fienberg was one of the eleven people murdered yesterday morning at the Tree of Life synagogue. I had been vaguely afraid this could be the case since hearing about the shooting there, just because it was not far from the University of Pittsburgh, and CMU, but then a friend emailed me she indeed was one of the victims. When her husband Steve was on sabbatical in Paris, we met a few times for memorable dinners. I think the last time I saw her was a few years ago in a Paris hotel where Joyce, Steve and I had breakfast together to take advantage of one of their short trips to Paris. In remembrance of this wonderful woman who got assassinated by an anti-Semitic extremist, here is how Steve described their encounter in his Statistical Science interview:

I had met my wife Joyce at the University of Toronto when we were both undergraduates. I was actually working in the fall of 1963 in the registrar’s office, and on the first day the office opened to enroll people, Joyce came through. And one of the benefits about working in the registrar’s office, besides earning some spending money, was meeting all these beautiful women students passing through. That first day I made a note to ask Joyce out on a date. The next day she came through again, this time bringing through another young woman who turned out to be the daughter of friends of her parents. And I thought this was a little suspicious, but auspicious in the sense that maybe I would succeed in getting a date when I asked her. And the next day, she came through again! This time with her cousin! Then I knew that this was really going to work out. And it did. We got engaged at the end of the summer of 1964 after I graduated, but we weren’t married when I went away to graduate school. In fact, yesterday I was talking to one of the students at the University of Connecticut who was a little concerned about graduate school; it was wearing her down, and I told her I almost left after the first semester because I wasn’t sure if I was going to make a go of it, in part because I was lonely. But I did survive, and Joyce came at the end of the first year; we got married right after classes ended, and we’ve been together ever since.

distributions for parameters [seminar]

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , , on January 22, 2018 by xi'an
Next Thursday, January 25, Nancy Reid will give a seminar in Paris-Dauphine on distributions for parameters that covers different statistical paradigms and bring a new light on the foundations of statistics. (Coffee is at 10am in the Maths department common room and the talk is at 10:15 in room A, second floor.)

Nancy Reid is University Professor of Statistical Sciences and the Canada Research Chair in Statistical Theory and Applications at the University of Toronto and internationally acclaimed statistician, as well as a 2014 Fellow of the Royal Society of Canada. In 2015, she received the Order of Canada, was elected a foreign associate of the National Academy of Sciences in 2016 and has been awarded many other prestigious statistical and science honours, including the Committee of Presidents of Statistical Societies (COPSS) Award in 1992.

Nancy Reid’s research focuses on finding more accurate and efficient methods to deduce and conclude facts from complex data sets to ultimately help scientists find specific solutions to specific problems.

There is currently some renewed interest in developing distributions for parameters, often without relying on prior probability measures. Several approaches have been proposed and discussed in the literature and in a series of “Bayes, fiducial, and frequentist” workshops and meeting sessions. Confidence distributions, generalized fiducial inference, inferential models, belief functions, are some of the terms associated with these approaches.  I will survey some of this work, with particular emphasis on common elements and calibration properties. I will try to situate the discussion in the context of the current explosion of interest in big data and data science. 

likelihood inflating sampling algorithm

Posted in Books, Statistics, University life with tags , , , , , , , , on May 24, 2016 by xi'an

My friends from Toronto Radu Craiu and Jeff Rosenthal have arXived a paper along with Reihaneh Entezari on MCMC scaling for large datasets, in the spirit of Scott et al.’s (2013) consensus Monte Carlo. They devised an likelihood inflated algorithm that brings a novel perspective to the problem of large datasets. This question relates to earlier approaches like consensus Monte Carlo, but also kernel and Weierstrass subsampling, already discussed on this blog, as well as current research I am conducting with my PhD student Changye Wu. The approach by Entezari et al. is somewhat similar to consensus Monte Carlo and the other solutions in that they consider an inflated (i.e., one taken to the right power) likelihood based on a subsample, with the full sample being recovered by importance sampling. Somewhat unsurprisingly this approach leads to a less dispersed estimator than consensus Monte Carlo (Theorem 1). And the paper only draws a comparison with that sub-sampling method, rather than covering other approaches to the problem, maybe because this is the most natural connection, one approach being the k-th power of the other approach.

“…we will show that [importance sampling] is unnecessary in many instances…” (p.6)

An obvious question that stems from the approach is the call for importance sampling, since the numerator of the importance sampler involves the full likelihood which is unavailable in most instances when sub-sampled MCMC is required. I may have missed the part of the paper where the above statement is discussed, but the only realistic example discussed therein is the Bayesian regression tree (BART) of Chipman et al. (1998). Which indeed constitutes a challenging if one-dimensional example, but also one that requires delicate tuning that leads to cancelling importance weights but which may prove delicate to extrapolate to other models.

Sampling latent states for high-dimensional non-linear state space models with the embedded HMM method

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , on March 17, 2016 by xi'an

IMG_19390Previously, I posted a comment on a paper by Alex Shestopaloff and Radford Neal, after my visit to Toronto two years ago, using a particular version of ensemble Monte Carlo. A new paper by the same authors was recently arXived, as an refinement of the embedded HMM paper of Neal (2003), in that the authors propose a new and more efficient way to generate from the (artificial) embedded hidden Markov sampler that is central to their technique of propagating a set of pool states. The method exploits both forward and backward representations of HMMs in an alternating manner. And propagates the pool states from one observation time to the next. The paper also exploits latent Gaussian structures to make autoregressive proposals, as well as flip proposals from x to -x [which seem to only make sense when 0 is a central value for the target, i.e. when the observables y only depend on |x|]. All those modifications bring the proposal quite close to (backward) particle Gibbs, the difference being in using Metropolis rather than importance steps. And in an improvement brought by the embedded HMM approach, even though it is always delicate to generalise those comparisons when some amount of calibration is required by both algorithms under comparison. (Especially delicate when it is rather remote from my area of expertise!) Anyway, I am still intrigued [in a positive way] by the embedded HMM idea as it remains mysterious that a finite length HMM simulation can improve the convergence performances that much. And wonder at a potential connection with an earlier paper of Anthony Lee and Krys Latuszynski using a random number of auxiliary variables. Presumably a wrong impression from a superficial memory…

Measuring statistical evidence using relative belief [book review]

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , , , , , , , on July 22, 2015 by xi'an

“It is necessary to be vigilant to ensure that attempts to be mathematically general do not lead us to introduce absurdities into discussions of inference.” (p.8)

This new book by Michael Evans (Toronto) summarises his views on statistical evidence (expanded in a large number of papers), which are a quite unique mix of Bayesian  principles and less-Bayesian methodologies. I am quite glad I could receive a version of the book before it was published by CRC Press, thanks to Rob Carver (and Keith O’Rourke for warning me about it). [Warning: this is a rather long review and post, so readers may chose to opt out now!]

“The Bayes factor does not behave appropriately as a measure of belief, but it does behave appropriately as a measure of evidence.” (p.87)

Continue reading