Archive for harmonic mean estimator

Another harmonic mean

Posted in Books, Statistics, University life with tags , , , , , , , , on May 21, 2022 by xi'an

Yet another paper that addresses the approximation of the marginal likelihood by a truncated harmonic mean, a popular theme of mine. A 2020 paper by Johannes Reich, entitled Estimating marginal likelihoods from the posterior draws through a geometric identity and published in Monte Carlo Methods and Applications.

The geometric identity it aims at exploiting is that

m(x) = \frac{\int_A \,\text d\theta}{\int_A \pi(\theta|x)\big/\pi(\theta)f(x|\theta)\,\text d\theta}

for any (positive volume) compact set $A$. This is exactly the same identity as in an earlier and uncited 2017 paper by Ana Pajor, with the also quite similar (!) title Estimating the Marginal Likelihood Using the Arithmetic Mean Identity and which I discussed on the ‘Og, linked with another 2012 paper by Lenk. Also discussed here. This geometric or arithmetic identity is again related to the harmonic mean correction based on a HPD region A that Darren Wraith and myself proposed at MaxEnt 2009. And that Jean-Michel and I presented at Frontiers of statistical decision making and Bayesian analysis in 2010.

In this avatar, the set A is chosen close to an HPD region, once more, with a structure that allows for an exact computation of its volume. Namely an ellipsoid that contains roughly 50% of the simulations from the posterior (rather than our non-intersecting union of balls centered at the 50% HPD points), which assumes a Euclidean structure of the parameter space (or, in other words, depends on the parameterisation)In the mixture illustration, the author surprisingly omits Chib’s solution, despite symmetrised versions avoiding the label (un)switching issues. . What I do not get is how this solution gets around the label switching challenge in that set A remains an ellipsoid for multimodal posteriors, which means it either corresponds to a single mode [but then how can a simulation be restricted to a “single permutation of the indicator labels“?] or it covers all modes but also the unlikely valleys in-between.

 

machine-learning harmonic mean

Posted in Books, Statistics with tags , , , , , , on February 25, 2022 by xi'an

In a recent arXival, Jason McEwen propose a resurrection of the “infamous” harmonic mean estimator. In Machine learning assisted Bayesian model comparison: learnt harmonic mean estimator, they propose to aim at the “optimal importance function”. The paper provides a fair coverage of the literature on that topic, incl. our 2009 paper with Darren Wraith (although I do not follow the criticism of using a uniform over an HPD region, esp. since one of the learnt targets is also a uniform over an hypersphere, presumably optimised in terms of the chosen parameterisation).

“…the learnt harmonic mean estimator, a variant of the original estimator that solves its large variance problem. This is achieved by interpreting the harmonic mean estimator as importance sampling and introducing a new target distribution (…) learned to approximate the optimal but inaccessible target, while minimising the variance of the resulting estimator. Since the estimator requires samples of the posterior only it is agnostic to the strategy used to generate posterior samples.”

The method thus builds upon Gelfand and Dey (1994) general proposal that is a form of inverse importance sampling since the numerator [the new target] is free while the denominator is the unnormalised posterior. The optimal target being the complete posterior (since it lead to a null variance), the authors propose to try to approximate this posterior by various means. (Note however that an almost Dirac mass at a value with positive posterior would work as well!, at least in principle…) as the sections on moment approximations sound rather standard (and assume the estimated variances are finite) while the reason for the inclusion of the Bayes factor approximation is rather unclear. However, I am rather skeptical at the proposals made therein towards approximating the posterior distribution, from a Gaussian mixture [for which parameterisation?] to KDEs, or worse ML tools like neural nets [not explored there, which makes one wonder about the title], as the estimands will prove very costly, and suffer from the curse of dimensionality (3 hours for d=2¹⁰…).The Pima Indian women’s diabetes dataset and its quasi-Normal posterior are used as a benchmark, meaning that James and Nicolas did not shout loud enough! And I find surprising that most examples include the original harmonic mean estimator despite its complete lack of trustworthiness.

robust inference using posterior bootstrap

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , , , , on February 18, 2022 by xi'an

The famous 1994 Read Paper by Michael Newton and Adrian Raftery was entitled Approximate Bayesian inference, where the boostrap aspect is in randomly (exponentially) weighting each observation in the iid sample through a power of the corresponding density, a proposal that happened at about the same time as Tony O’Hagan suggested the related fractional Bayes factor. (The paper may also be equally famous for suggesting the harmonic mean estimator of the evidence!, although it only appeared as an appendix to the paper.) What is unclear to me is the nature of the distribution g(θ) associated with the weighted bootstrap sample, conditional on the original sample, since the outcome is the result of a random Exponential sample and of an optimisation step. With no impact of the prior (which could have been used as a penalisation factor), corrected by Michael and Adrian via an importance step involving the estimation of g(·).

At the Algorithm Seminar today in Warwick, Emilie Pompe presented recent research, including some written jointly with Pierre Jacob, [which I have not yet read] that does exactly that inclusion of the log prior as penalisation factor, along with an extra weight different from one, as motivated by the possibility of a misspecification. Including a new approach to cut models. An alternative mentioned during the talk that reminds me of GANs is to generate a pseudo-sample from the prior predictive and add it to the original sample. (Some attendees commented on the dependence of the later version on the chosen parameterisation, which is an issue that had X’ed my mind as well.)

sandwiching a marginal

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , on March 8, 2021 by xi'an

When working recently on a paper for estimating the marginal likelihood, I was pointed out this earlier 2015 paper by Roger Grosse, Zoubin Ghahramani and Ryan Adams, which had escaped till now. The beginning of the paper discusses the shortcomings of importance sampling (when simulating from the prior) and harmonic mean (when simulating from the posterior) as solution. And of anNealed importance sampling (when simulating from a sequence, which sequence?!, of targets). The authors are ending up proposing a sequential Monte Carlo or (posterior) particle learning solution. A remark on annealed importance sampling is that there exist both a forward and a backward version for estimating the marginal likelihood, either starting from a simulation from the prior (easy) or from a simulation from the posterior (hard!). As in, e.g., Nicolas Chopin’s thesis, the intermediate steps are constructed from a subsample of the entire sample.

In this context, unbiasedness can be misleading: because partition function estimates can vary over many orders of magnitude, it’s common for an unbiased estimator to drastically underestimate Ζ with overwhelming probability, yet occasionally return extremely large estimates. (An extreme example is likelihood weighting, which is unbiased, but is extremely unlikely to give an accurate answer for a high-dimensional model.) Unless the estimator is chosen very carefully, the variance is likely to be extremely large, or even infinite.”

One novel aspect of the paper is to advocate for the simultaneous use of different methods and for producing both lower and upper bounds on the marginal p(y) and wait for them to get close enough. It is however delicate to find upper bounds, except when using the dreaded harmonic mean estimator.  (A nice trick associated with reverse annealed importance sampling is that the reverse chain can be simulated exactly from the posterior if associated with simulated data, except I am rather lost at the connection between the actual and simulated data.) In a sequential harmonic mean version, the authors also look at the dangers of using an harmonic mean but argue the potential infinite variance of the weights does not matter so much for log p(y), without displaying any variance calculation… The paper also contains a substantial experimental section that compares the different solutions evoked so far, plus others like nested sampling. Which did not work poorly in the experiment (see below) but could not be trusted to provide a lower or an upper bound. The computing time to achieve some level of agreement is however rather daunting. An interesting read definitely (and I wonder what happened to the paper in the end).

marginal likelihood with large amounts of missing data

Posted in Books, pictures, Statistics with tags , , , , , , , , on October 20, 2020 by xi'an

In 2018, Panayiota Touloupou, research fellow at Warwick, and her co-authors published a paper in Bayesian analysis that somehow escaped my radar, despite standing in my first circle of topics of interest! They construct an importance sampling approach to the approximation of the marginal likelihood, the importance function being approximated from a preliminary MCMC run, and consider the special case when the sampling density (i.e., the likelihood) can be represented as the marginal of a joint density. While this demarginalisation perspective is rather usual, the central point they make is that it is more efficient to estimate the sampling density based on the auxiliary or latent variables than to consider the joint posterior distribution of parameter and latent in the importance sampler. This induces a considerable reduction in dimension and hence explains (in part) why the approach should prove more efficient. Even though the approximation itself is costly, at about 5 seconds per marginal likelihood. But a nice feature of the paper is to include the above graph that includes both computing time and variability for different methods (the blue range corresponding to the marginal importance solution, the red range to RJMCMC and the green range to Chib’s estimate). Note that bridge sampling does not appear on the picture but returns a variability that is similar to the proposed methodology.

%d bloggers like this: