**I**n connection with the special issue of Entropy I mentioned a while ago, Pierre Alquier (formerly of CREST) has written an introduction to the topic of approximate Bayesian inference that is worth advertising (and freely-available as well). Its reference list is particularly relevant. (The deadline for submissions is 21 June,)

## Archive for expectation-propagation

## approximate Bayesian inference [survey]

Posted in Statistics with tags ABC, Approximate Bayesian computation, Bayesian statistics, CREST, entropy, expectation-propagation, Gibbs posterior, Langevin Monte Carlo, Laplace approximations, machine learning, Markov chain Monte Carlo, MCMC, PAC-Bayes, RIKEN, sequential Monte Carlo, special issue, survey, Tokyo, variational approximations on May 3, 2021 by xi'an## Expectation Propagation as a Way of Life on-line

Posted in pictures, Statistics, University life with tags Andrew Gelman, Bayesian computation, Bayesian inference, big data, distributed Bayesian inference, Edward Hopper, expectation-propagation, gas, gas station, JMLR, Journal of Machine-Learning, New York, The Museum of Modern Art, way of life on March 18, 2020 by xi'an**A**fter a rather extended shelf-life, our paper *expectation propagation as a way of life: a framework for Bayesian inference on partitioned data *which was started when Andrew visited Paris in… 2014!, and to which I only marginally contributed, has now appeared in JMLR! Which happens to be my very first paper in this journal.

## 7 years later…

Posted in Statistics with tags Andrew Gelman, Bayesian computation, divide-and-conquer strategy, expectation-propagation, JMLR, Journal of Machine-Learning, Paris on February 20, 2020 by xi'an## likelihood-free approximate Gibbs sampling

Posted in Books, Statistics with tags ABC, ABC-Gibbs, ABC-within-Gibbs, curse of dimensionality, expectation-propagation, Gibbs sampling, local regression, neural network, summary statistics on June 19, 2019 by xi'an

“Low-dimensional regression-based models are constructed for each of these conditional distributions using synthetic (simulated) parameter value and summary statistic pairs, which then permit approximate Gibbs update steps (…) synthetic datasets are not generated during each sampler iteration, thereby providing efficiencies for expensive simulator models, and only require sufficient synthetic datasets to adequately construct the full conditional models (…) Construction of the approximate conditional distributions can exploit known structures of the high-dimensional posterior, where available, to considerably reduce computational overheads”

**G**uilherme Souza Rodrigues, David Nott, and Scott Sisson have just arXived a paper on approximate Gibbs sampling. Since this comes a few days after we posted our own version, here are some of the differences I could spot in the paper:

- Further references to earlier occurrences of Gibbs versions of ABC, esp. in cases when the likelihood function factorises into components and allows for summaries with lower dimensions. And even to ESP.
- More an ABC version of Gibbs sampling that a Gibbs version of ABC in that approximations to the conditionals are first constructed and then used with no further corrections.
- Inherently related to regression post-processing à la Beaumont et al. (2002) in that the regression model is the start to designing an approximate full conditional, conditional on the “other” parameters and on the overall summary statistic. The construction of the approximation is far from automated. And may involve neural networks or other machine learning estimates.
- As a consequence of the above, a preliminary ABC step to design the collection of approximate full conditionals using a single and all-purpose multidimensional summary statistic.
- Once the approximations constructed, no further pseudo-data is generated.
- Drawing from the approximate full conditionals is done exactly, possibly via a bootstrapped version.
- Handling a highly complex g-and-k dynamic model with 13,140 unknown parameters, requiring a ten days simulation.

“In certain circumstances it can be seen that the likelihood-free approximate Gibbs sampler will exactly target the true partial posterior (…) In this case, then Algorithms 2 and 3 will be exact.”

Convergence and coherence are handled in the paper by setting the algorithm(s) as noisy Monte Carlo versions, à la Alquier et al., although the issue of incompatibility between the full conditionals is acknowledged, with the main reference being the finite state space analysis of Chen and Ip (2015). It thus remains unclear whether or not the Gibbs samplers that are implemented there do converge and if they do what is the significance of the stationary distribution.

## X divergence for approximate inference

Posted in Statistics with tags adaptive importance sampling, divergence, expectation-propagation, Kullback-Leibler divergence, Pima Indians, population Monte Carlo, variational Bayes methods, Wasserstein distance on March 14, 2017 by xi'an**D**ieng et al. arXived this morning a new version of their paper on using the Χ divergence for variational inference. The Χ divergence essentially is the expectation of the squared ratio of the target distribution over the approximation, under the approximation. It is somewhat related to Expectation Propagation (EP), which aims at the Kullback-Leibler divergence between the target distribution and the approximation, under the target. And to variational Bayes, which is the same thing just the opposite way! The authors also point a link to our [adaptive] population Monte Carlo paper of 2008. (I wonder at a possible version through Wasserstein distance.)

Some of the arguments in favour of this new version of variational Bayes approximations is that (a) the support of the approximation over-estimates the posterior support; (b) it produces over-dispersed versions; (c) it relates to a well-defined and global objective function; (d) it allows for a sandwich inequality on the model evidence; (e) the function of the [approximation] parameter to be minimised is under the approximation, rather than under the target. The latest allows for a gradient-based optimisation. While one of the applications is on a Bayesian probit model applied to the Pima Indian women dataset [and will thus make James and Nicolas cringe!], the experimental assessment shows lower error rates for this and other benchmarks. Which in my opinion does not tell so much about the original Bayesian approach.