**W**hile visiting Warwick last week, Jean-Michel Marin pointed out and forwarded me this remarkable paper of Jerzy Neyman, published in 1937, and presented to the Royal Society by Harold Jeffreys.

*“Leaving apart on one side the practical difficulty of achieving randomness and the meaning of this word when applied to actual experiments…”*

*“It may be useful to point out that although we are frequently witnessing controversies in which authors try to defend one or another system of the theory of probability as the only legitimate, I am of the opinion that several such theories may be and actually are legitimate, in spite of their occasionally **contradicting one another. Each of these theories is based on some system of postulates, and so long as the postulates forming one particular system do not contradict each other and are sufficient to construct a theory, this is as legitimate as any other. “*

This paper is fairly long in part because Neyman starts by setting Kolmogorov’s axioms of probability. This is of historical interest but also needed for Neyman to oppose his notion of probability to Jeffreys’ (which is the same from a formal perspective, I believe!). He actually spends a fair chunk on explaining why constants cannot have anything but trivial probability measures. Getting ready to state that an a priori distribution has no meaning (p.343) and that in the rare cases it does it is mostly unknown. While reading the paper, I thought that the distinction was more in terms of frequentist or conditional properties of the estimators, Neyman’s arguments paving the way to his definition of a confidence interval. Assuming repeatability of the experiment under the same conditions and therefore same parameter value (p.344).

*“The advantage of the unbiassed [sic] estimates and the justification of their use lies in the fact that in cases frequently met the probability of their differing very much from the estimated parameters is small.”*

*“…the maximum likelihood estimates appear to be what could be called the best “almost unbiassed [sic]” estimates.”*

It is also quite interesting to read that the principle for insisting on unbiasedness is one of producing small errors, because this is not that often the case, as shown by the complete class theorems of Wald (ten years later). And that maximum likelihood is somewhat relegated to a secondary rank, almost unbiased being understood as consistent. A most amusing part of the paper is when Neyman inverts the credible set into a confidence set, that is, turning what is random in a constant and vice-versa. With a justification that the credible interval has zero or one coverage, while the confidence interval has a long-run validity of returning the correct rate of success. What is equally amusing is that the boundaries of a credible interval turn into functions of the sample, hence could be evaluated on a frequentist basis, as done later by Dennis Lindley and others like Welch and Peers, but that Neyman fails to see this and turn the bounds into hard values. For a given sample.

*“This, however, is not always the case, and in general there are two or more systems of confidence intervals possible corresponding to the same confidence coefficient α, such that for certain sample points, E’, the intervals in one system are shorter than those in the other, while for some other sample points, E”, the reverse is true.”*

The resulting construction of a confidence interval is then awfully convoluted when compared with the derivation of an HPD region, going through regions of acceptance that are the dual of a confidence interval (in the sampling space), while apparently [from my hasty read] missing a rule to order them. And rejecting the notion of a confidence interval being possibly empty, which, while being of practical interest, clashes with its frequentist backup.