Archive for maximum likelihood estimation

almost uniform but far from straightforward

Posted in Books, Kids, Statistics with tags , , , , , , , on October 24, 2018 by xi'an

A question on X validated about a [not exactly trivial] maximum likelihood for a triangular function led me to a fascinating case, as exposed by Olver in 1972 in The American Statistician. When considering an asymmetric triangle distribution on (0,þ), þ being fixed, the MLE for the location of the tip of the triangle is necessarily one of the observations [which was not the case in the original question on X validated ]. And not in an order statistic of rank j that does not stand in the j-th uniform partition of (0,þ). Furthermore there are opportunities for observing several global modes… In the X validated case of the symmetric triangular distribution over (0,θ), with ½θ as tip of the triangle, I could not figure an alternative to the pedestrian solution of looking separately at each of the (n+1) intervals where θ can stand and returning the associated maximum on that interval. Definitely a good (counter-)example about (in)sufficiency for class or exam!

Implicit maximum likelihood estimates

Posted in Statistics with tags , , , , , , , , , , on October 9, 2018 by xi'an

An ‘Og’s reader pointed me to this paper by Li and Malik, which made it to arXiv after not making it to NIPS. While the NIPS reviews were not particularly informative and strongly discordant, the authors point out in the comments that they are available for the sake of promoting discussion. (As made clear in earlier posts, I am quite supportive of this attitude! Disclaimer: I was not involved in an evaluation of this paper, neither for NIPS nor for another conference or journal!!) Although the paper does not seem to mention ABC in the setting of implicit likelihoods and generative models, there is a reference to the early (1984) paper by Peter Diggle and Richard Gratton that is often seen as the ancestor of ABC methods. The authors point out numerous issues with solutions proposed for parameter estimation in such implicit models. For instance, for GANs, they signal that “minimizing the Jensen-Shannon divergence or the Wasserstein distance between the empirical data distribution and the model distribution does not necessarily minimize the same between the true data distribution and the model distribution.” (Not mentioning the particular difficulty with Bayesian GANs.) Their own solution is the implicit maximum likelihood estimator, which picks the value of the parameter θ bringing a simulated sample the closest to the observed sample. Closest in the sense of the Euclidean distance between both samples. Or between the minimum of several simulated samples and the observed sample. (The modelling seems to imply the availability of n>1 observed samples.) They advocate using a stochastic gradient descent approach for finding the optimal parameter θ which presupposes that the dependence between θ and the simulated samples is somewhat differentiable. (And this does not account for using a min, which would make differentiation close to impossible.) The paper then meanders in a lengthy discussion as to whether maximising the likelihood makes sense, with a rather naïve view on why using the empirical distribution in a Kullback-Leibler divergence does not make sense! What does not make sense is considering the finite sample approximation to the Kullback-Leibler divergence with the true distribution in my opinion.

asymptotics of M³C²L

Posted in Statistics with tags , , , , , , , on August 19, 2018 by xi'an
In a recent arXival, Blazej Miasojedow, Wojciech Niemiro and Wojciech Rejchel establish the convergence of a maximum likelihood estimator based on an MCMC approximation of the likelihood function. As in intractable normalising constants. The main result in the paper is a Central Limit theorem for the M³C²L estimator that incorporates an additional asymptotic variance term for the Monte Carlo error. Where both the sample size n and the number m of simulations go to infinity. Independently so. However, I do not fully perceive the relevance of using an MCMC chain to target an importance function [which is used in the approximation of the normalising constant or otherwise for the intractable likelihood], relative to picking an importance function h(.) that can be directly simulated.

indecent exposure

Posted in Statistics with tags , , , , , , , , , , , , on July 27, 2018 by xi'an

While attending my last session at MCqMC 2018, in Rennes, before taking a train back to Paris, I was confronted by this radical opinion upon our previous work with Matt Moores (Warwick) and other coauthors from QUT, where the speaker, Maksym Byshkin from Lugano, defended a new approach for maximum likelihood estimation using novel MCMC methods. Based on the point fixe equation characterising maximum likelihood estimators for exponential families, when theoretical and empirical moments of the natural statistic are equal. Using a Markov chain with stationary distribution the said exponential family, the fixed point equation can be turned into a zero divergence equation, requiring simulation of pseudo-data from the model, which depends on the unknown parameter. Breaking this circular argument, the authors note that simulating pseudo-data that reproduce the observed value of the sufficient statistic is enough. Which is related with Geyer and Thomson (1992) famous paper about Monte Carlo maximum likelihood estimation. From there I was and remain lost as I cannot see why a derivative of the expected divergence with respect to the parameter θ can be computed when this divergence is found by Monte Carlo rather than exhaustive enumeration. And later used in a stochastic gradient move on the parameter θ… Especially when the null divergence is imposed on the parameter. In any case, the final slide shows an application to a large image and an Ising model, solving the problem (?) in 140 seconds and suggesting indecency, when our much slower approach is intended to produce a complete posterior simulation in this context.

an improvable Rao–Blackwell improvement, inefficient maximum likelihood estimator, and unbiased generalized Bayes estimator

Posted in Books, Statistics, University life with tags , , , , , , , , on February 2, 2018 by xi'an

In my quest (!) for examples of location problems with no UMVU estimator, I came across a neat paper by Tal Galili [of R Bloggers fame!] and Isaac Meilijson presenting somewhat paradoxical properties of classical estimators in the case of a Uniform U((1-k)θ,(1+k)θ) distribution when 0<k<1 is known. For this model, the minimal sufficient statistic is the pair made of the smallest and of the largest observations, L and U. Since this pair is not complete, the Rao-Blackwell theorem does not produce a single and hence optimal estimator. The best linear unbiased combination [in terms of its variance] of L and U is derived in this paper, although this does not produce the uniformly minimum variance unbiased estimator, which does not exist in this case. (And I do not understand the remark that

“Any unbiased estimator that is a function of the minimal sufficient statistic is its own Rao–Blackwell improvement.”

as this hints at an infinite sequence of improvement.) While the MLE is inefficient in this setting, the Pitman [best equivariant] estimator is both Bayes [against the scale Haar measure] and unbiased. While experimentally dominating the above linear combination. The authors also argue that, since “generalized Bayes rules need not be admissible”, there is no guarantee that the Pitman estimator is admissible (under squared error loss). But given that this is a uni-dimensional scale estimation problem I doubt very much there is a Stein effect occurring in this case.

best unbiased estimators

Posted in Books, Kids, pictures, Statistics, University life with tags , , , , , , , , , , , , on January 18, 2018 by xi'an

A question that came out on X validated today kept me busy for most of the day! It relates to an earlier question on the best unbiased nature of a maximum likelihood estimator, to which I pointed out the simple case of the Normal variance when the estimate is not unbiased (but improves the mean square error). Here, the question is whether or not the maximum likelihood estimator of a location parameter, when corrected from its bias, is the best unbiased estimator (in the sense of the minimal variance). The question is quite interesting in that it links to the mathematical statistics of the 1950’s, of Charles Stein, Erich Lehmann, Henry Scheffé, and Debabrata Basu. For instance, if there exists a complete sufficient statistic for the problem, then there exists a best unbiased estimator of the location parameter, by virtue of the Lehmann-Scheffé theorem (it is also a consequence of Basu’s theorem). And the existence is pretty limited in that outside the two exponential families with location parameter, there is no other distribution meeting this condition, I believe. However, even if there is no complete sufficient statistic, there may still exist best unbiased estimators, as shown by Bondesson. But Lehmann and Scheffé in their magisterial 1950 Sankhya paper exhibit a counter-example, namely the U(θ-1,θ-1) distribution:

since no non-constant function of θ allows for a best unbiased estimator.

Looking in particular at the location parameter of a Cauchy distribution, I realised that the Pitman best equivariant estimator is unbiased as well [for all location problems] and hence dominates the (equivariant) maximum likelihood estimator which is unbiased in this symmetric case. However, as detailed in a nice paper of Gabriela Freue on this problem, I further discovered that there is no uniformly minimal variance estimator and no uniformly minimal variance unbiased estimator! (And that the Pitman estimator enjoys a closed form expression, as opposed to the maximum likelihood estimator.) This sounds a bit paradoxical but simply means that there exists different unbiased estimators which variance functions are not ordered and hence not comparable. Between them and with the variance of the Pitman estimator.

X-Outline of a Theory of Statistical Estimation

Posted in Books, Statistics, University life with tags , , , , , , , , , , on March 23, 2017 by xi'an

While visiting Warwick last week, Jean-Michel Marin pointed out and forwarded me this remarkable paper of Jerzy Neyman, published in 1937, and presented to the Royal Society by Harold Jeffreys.

“Leaving apart on one side the practical difficulty of achieving randomness and the meaning of this word when applied to actual experiments…”

“It may be useful to point out that although we are frequently witnessing controversies in which authors try to defend one or another system of the theory of probability as the only legitimate, I am of the opinion that several such theories may be and actually are legitimate, in spite of their occasionally contradicting one another. Each of these theories is based on some system of postulates, and so long as the postulates forming one particular system do not contradict each other and are sufficient to construct a theory, this is as legitimate as any other. “

This paper is fairly long in part because Neyman starts by setting Kolmogorov’s axioms of probability. This is of historical interest but also needed for Neyman to oppose his notion of probability to Jeffreys’ (which is the same from a formal perspective, I believe!). He actually spends a fair chunk on explaining why constants cannot have anything but trivial probability measures. Getting ready to state that an a priori distribution has no meaning (p.343) and that in the rare cases it does it is mostly unknown. While reading the paper, I thought that the distinction was more in terms of frequentist or conditional properties of the estimators, Neyman’s arguments paving the way to his definition of a confidence interval. Assuming repeatability of the experiment under the same conditions and therefore same parameter value (p.344).

“The advantage of the unbiassed [sic] estimates and the justification of their use lies in the fact that in cases frequently met the probability of their differing very much from the estimated parameters is small.”

“…the maximum likelihood estimates appear to be what could be called the best “almost unbiassed [sic]” estimates.”

It is also quite interesting to read that the principle for insisting on unbiasedness is one of producing small errors, because this is not that often the case, as shown by the complete class theorems of Wald (ten years later). And that maximum likelihood is somewhat relegated to a secondary rank, almost unbiased being understood as consistent. A most amusing part of the paper is when Neyman inverts the credible set into a confidence set, that is, turning what is random in a constant and vice-versa. With a justification that the credible interval has zero or one coverage, while the confidence interval has a long-run validity of returning the correct rate of success. What is equally amusing is that the boundaries of a credible interval turn into functions of the sample, hence could be evaluated on a frequentist basis, as done later by Dennis Lindley and others like Welch and Peers, but that Neyman fails to see this and turn the bounds into hard values. For a given sample.

“This, however, is not always the case, and in general there are two or more systems of confidence intervals possible corresponding to the same confidence coefficient α, such that for certain sample points, E’, the intervals in one system are shorter than those in the other, while for some other sample points, E”, the reverse is true.”

The resulting construction of a confidence interval is then awfully convoluted when compared with the derivation of an HPD region, going through regions of acceptance that are the dual of a confidence interval (in the sampling space), while apparently [from my hasty read] missing a rule to order them. And rejecting the notion of a confidence interval being possibly empty, which, while being of practical interest, clashes with its frequentist backup.