Archive for EM algorithm

Bayesian filtering and smoothing [book review]

Posted in Books, Statistics, Travel, University life with tags , , , , , , , , , , , , on February 25, 2015 by xi'an

When in Warwick last October, I met Simo Särkkä, who told me he had published an IMS monograph on Bayesian filtering and smoothing the year before. I thought it would be an appropriate book to review for CHANCE and tried to get a copy from Oxford University Press, unsuccessfully. I thus bought my own book that I received two weeks ago and took the opportunity of my Czech vacations to read it… [A warning pre-empting accusations of self-plagiarism: this is a preliminary draft for a review to appear in CHANCE under my true name!]

“From the Bayesian estimation point of view both the states and the static parameters are unknown (random) parameters of the system.” (p.20)

 Bayesian filtering and smoothing is an introduction to the topic that essentially starts from ground zero. Chapter 1 motivates the use of filtering and smoothing through examples and highlights the naturally Bayesian approach to the problem(s). Two graphs illustrate the difference between filtering and smoothing by plotting for the same series of observations the successive confidence bands. The performances are obviously poorer with filtering but the fact that those intervals are point-wise rather than joint, i.e., that the graphs do not provide a confidence band. (The exercise section of that chapter is superfluous in that it suggests re-reading Kalman’s original paper and rephrases the Monty Hall paradox in a story unconnected with filtering!) Chapter 2 gives an introduction to Bayesian statistics in general, with a few pages on Bayesian computational methods. A first remark is that the above quote is both correct and mildly confusing in that the parameters can be consistently estimated, while the latent states cannot. A second remark is that justifying the MAP as associated with the 0-1 loss is incorrect in continuous settings.  The third chapter deals with the batch updating of the posterior distribution, i.e., that the posterior at time t is the prior at time t+1. With applications to state-space systems including the Kalman filter. The fourth to sixth chapters concentrate on this Kalman filter and its extension, and I find it somewhat unsatisfactory in that the collection of such filters is overwhelming for a neophyte. And no assessment of the estimation error when the model is misspecified appears at this stage. And, as usual, I find the unscented Kalman filter hard to fathom! The same feeling applies to the smoothing chapters, from Chapter 8 to Chapter 10. Which mimic the earlier ones. Continue reading

how many modes in a normal mixture?

Posted in Books, Kids, Statistics, University life with tags , , , , , , on January 7, 2015 by xi'an

cover of Mixture Estimation and ApplicationsAn interesting question I spotted on Cross Validated today: How to tell if a mixture of Gaussians will be multimodal? Indeed, there is no known analytical condition on the parameters of a fully specified k-component mixture for the modes to number k or less than k… Googling around, I immediately came upon this webpage by Miguel Carrera-Perpinan, who studied the issue with Chris Williams when writing his PhD in Edinburgh. And upon this paper, which not only shows that

  1. unidimensional Gaussian mixtures with k components have at most k modes;
  2. unidimensional non-Gaussian mixtures with k components may have more than k modes;
  3. multidimensional mixtures with k components may have more than k modes.

but also provides ways of finding all the modes. Ways which seem to reduce to using EM from a wide variety of starting points (an EM algorithm set in the sampling rather than in the parameter space since all parameters are set!). Maybe starting EM from each mean would be sufficient.  I still wonder if there are better ways, from letting the variances decrease down to zero until a local mode appear, to using some sort of simulated annealing…

Edit: Following comments, let me stress this is not a statistical issue in that the parameters of the mixture are set and known and there is no observation(s) from this mixture from which to estimate the number of modes. The mathematical problem is to determine how many local maxima there are for the function

f(x)\,:\,x \longrightarrow \sum_{i=1}^k p_i \varphi(x;\mu_i,\sigma_i)

Statistics slides (4)

Posted in Books, Kids, Statistics, University life with tags , , , , , , , , , on November 10, 2014 by xi'an

La Défense from Paris-Dauphine, Nov. 15, 2012Here is the fourth set of slides for my third year statistics course, trying to build intuition about the likelihood surface and why on Earth would one want to find its maximum?!, through graphs. I am yet uncertain whether or not I will reach the point where I can teach more asymptotics so maybe I will also include asymptotic normality of the MLE under regularity conditions in this chapter…

Nonlinear Time Series just appeared

Posted in Books, R, Statistics, University life with tags , , , , , , , , , , , , , , , on February 26, 2014 by xi'an

My friends Randal Douc and Éric Moulines just published this new time series book with David Stoffer. (David also wrote Time Series Analysis and its Applications with Robert Shumway a year ago.) The books reflects well on the research of Randal and Éric over the past decade, namely convergence results on Markov chains for validating both inference in nonlinear time series and algorithms applied to those objects. The later includes MCMC, pMCMC, sequential Monte Carlo, particle filters, and the EM algorithm. While I am too close to the authors to write a balanced review for CHANCE (the book is under review by another researcher, before you ask!), I think this is an important book that reflects the state of the art in the rigorous study of those models. Obviously, the mathematical rigour advocated by the authors makes Nonlinear Time Series a rather advanced book (despite the authors’ reassuring statement that “nothing excessively deep is used”) more adequate for PhD students and researchers than starting graduates (and definitely not advised for self-study), but the availability of the R code (on the highly personal page of David Stoffer) comes to balance the mathematical bent of the book in the first and third parts. A great reference book!

finite mixture models [book review]

Posted in Books, Kids, Statistics, University life with tags , , , , , , , , , , , on February 17, 2014 by xi'an

Here is a review of Finite Mixture Models (2000) by Geoff McLachlan & David Peel that I wrote aeons ago (circa 1999), supposedly for JASA, which lost first the files and second the will to publish it. As I was working with my student today, I mentioned the book to her and decided to publish it here, if only because I think the book deserved a positive review, even after all those years! (Since then, Sylvia Frühwirth-Schnatter published Finite Mixture and Markov Switching Models (2004), which is closer to my perspective on the topic and that I would more naturally recommend.)

Mixture modeling, that is, the use of weighted sums of standard distributions as in

\sum_{i=1}^k p_i f({\mathbf y};{\mathbf \theta}_i)\,,

is a widespread and increasingly used technique to overcome the rigidity of standard parametric distributions such as f(y;θ), while retaining a parametric nature, as exposed in the introduction of my JASA review to Böhning’s (1998) book on non-parametric mixture estimation (Robert, 2000). This review pointed out that, while there are many books available on the topic of mixture estimation, the unsurpassed reference remained the book by Titterington, Smith and Makov (1985)  [hereafter TSM]. I also suggested that a new edition of TSM would be quite timely, given the methodological and computational advances that took place in the past 15 years: while it remains unclear whether or not this new edition will ever take place, the book by McLachlan and Peel gives an enjoyable and fairly exhaustive update on the topic, incorporating the most recent advances on mixtures and some related models.

Geoff McLachlan has been a major actor in the field for at least 25 years, through papers, software—the book concludes with a review of existing software—and books: McLachlan (1992), McLachlan and Basford (1988), and McLachlan and Krishnan (1997). I refer the reader to Lindsay (1989) for a review of the second book, which is a forerunner of, and has much in common with, the present book. Continue reading

reading classics (#9,10)

Posted in Books, Kids, Statistics, University life with tags , , , , , , , , , , , , on January 28, 2014 by xi'an

La Défense from Paris-Dauphine, Nov. 15, 2012Today was the very last session of our Reading Classics Seminar for the academic year 2013-2014. We listened two presentations, one on the Casella and Strawderman (1984) paper on the estimation of the normal bounded mean. And one on the Hartigan and Wong’s 1979 K-Means Clustering Algorithm paper in JRSS C. The first presentation did not go well as my student had difficulties with the maths behind the paper. (As he did not come to ask me or others for help, it may well be that he put this talk together at the last minute, at a time busy with finals and project deliveries. He also failed to exploit those earlier presentations of the paper.) The innovative part in the talk was the presentation of several R simulations comparing the risk of the minimax Bayes estimator with the one for the MLE. Although the choice of simulating different samples of standard normals for different values of the parameters and even for both estimators made the curves (unnecessarily) all wiggly.

By contrast, the second presentation was very well-designed, with great Beamer slides, interactive features and a software oriented focus. My student Mouna Berrada started from the existing R function kmeans to explain the principles of the algorithm, recycling the interactive presentation of last year as well (with my permission), and creating a dynamic flowchart that was most helpful. So she made the best of this very short paper! Just (predictably) missing the question of the statistical model behind the procedure. During the discussion, I mused why k-medians clustering was not more popular as it offered higher robustness guarantees, albeit further away from a genuine statistical model. And why k-means clustering was not more systematically compared with mixture (EM) estimation.

Here are the slides for the second talk

Special Issue of ACM TOMACS on Monte Carlo Methods in Statistics

Posted in Books, R, Statistics, University life with tags , , , , , , , , , , , , on December 10, 2012 by xi'an

As posted here a long, long while ago, following a suggestion from the editor (and North America Cycling Champion!) Pierre Lécuyer (Université de Montréal), Arnaud Doucet (University of Oxford) and myself acted as guest editors for a special issue of ACM TOMACS on Monte Carlo Methods in Statistics. (Coincidentally, I am attending a board meeting for TOMACS tonight in Berlin!) The issue is now ready for publication (next February unless I am confused!) and made of the following papers:

* Massive parallelization of serial inference algorithms for a complex generalized linear model
MARC A. SUCHARD, IVAN ZORYCH, PATRICK RYAN, DAVID MADIGAN
*Convergence of a Particle-based Approximation of the Block Online Expectation Maximization Algorithm
SYLVAIN LE CORFF and GERSENDE FORT
* Efficient MCMC for Binomial Logit Models
AGNES FUSSL, SYLVIA FRÜHWIRTH-SCHNATTER, RUDOLF FRÜHWIRTH
* Adaptive Equi-Energy Sampler: Convergence and Illustration
AMANDINE SCHRECK and GERSENDE FORT and ERIC MOULINES
* Particle algorithms for optimization on binary spaces
CHRISTIAN SCHÄFER
* Posterior expectation of regularly paved random histograms
RAAZESH SAINUDIIN, GLORIA TENG, JENNIFER HARLOW, and DOMINIC LEE
* Small variance estimators for rare event probabilities
MICHEL BRONIATOWSKI and VIRGILE CARON
* Self-Avoiding Random Dynamics on Integer Complex Systems
FIRAS HAMZE, ZIYU WANG, and NANDO DE FREITAS
* Bayesian learning of noisy Markov decision processes
SUMEETPAL S. SINGH, NICOLAS CHOPIN, and NICK WHITELEY

Here is the draft of the editorial that will appear at the beginning of this special issue. (All faults are mine, of course!) Continue reading

Follow

Get every new post delivered to your Inbox.

Join 879 other followers