Archive for pseudo-random generator

GPU-accelerated Gibbs sampling

Posted in Statistics, Travel, University life with tags , , , , , , on August 18, 2016 by xi'an

Alex Terenin told me during the welcoming reception of MCqMC 2016 that he, along with Shawfeng Dong and David Draper, had arXived a paper on GPU implementation of the Gibbs sampler and thanked me profusely for my accept-reject algorithm of the truncated normal distribution. Algorithm that he reprogrammed in CUDA. The paper is mostly a review on the specifics of GPU programming and of the constraints when compared with CPUs.  The type of models considered therein allows for GPU implementation because of a very large number of latent variables that are independent conditional on the parameter θ. Like, e.g., the horseshoe probit regression model, which is how my sampler enters the picture. Accept-reject algorithms are not ideally suited for GPUs because of the while not_accepted in the code, but I did not get [from our discussion] why it is more efficient to wait for the while loop to exit when compared with running more proposals and subset the accepted ones later. Presumably because this is too costly when ensuring at least one is accepted. The paper also mentions the issue of ensuring random generators remain valid when stretched across many threads, advocating block skips as discussed in an earlier (or even ancient) ‘Og post. In line with earlier comparison tests, the proper GPU implementation of the Gibbs sampler in this setting leads to improvements that are order of magnitude faster. Nonetheless, I wonder at the universality of the comparison in that GPUs lack the programming interface that is now available for CPUs. Some authors, like the current ones, have been putting some effort in constructing random generators in CUDA, but the entry cost for newbies like me still sounds overwhelming.

automatic variational ABC

Posted in pictures, Statistics with tags , , , , , , , , , , on July 8, 2016 by xi'an

Amster11“Stochastic Variational inference is an appealing alternative to the inefficient sampling approaches commonly used in ABC.”

Moreno et al. [including Ted Meeds and Max Welling] recently arXived a paper merging variational inference and ABC. The argument for turning variational is computational speedup. The traditional (in variational inference) divergence decomposition of the log-marginal likelihood is replaced by an ABC version, parameterised in terms of intrinsic generators (i.e., generators that do not depend on cyber-parameters, like the U(0,1) or the N(0,1) generators). Or simulation code in the authors’ terms. Which leads to the automatic aspect of the approach. In the paper the derivation of the gradient is indeed automated.

“One issue is that even assuming that the ABC likelihood is an unbiased estimator of the true likelihood (which it is not), taking the log introduces a bias, so that we now have a biased estimate of the lower bound and thus biased gradients.”

I wonder how much of an issue this is, since we consider the variational lower bound. To be optimised in terms of the parameters of the variational posterior. Indeed, the endpoint of the analysis is to provide an optimal variational approximation, which remains an approximation whether or not the likelihood estimator is unbiased. A more “severe” limitation may be in the inversion constraint, since it seems to eliminate Beta or Gamma distributions. (Even though calling qbeta(runif(1),a,b) definitely is achievable… And not rejected by a Kolmogorov-Smirnov test.)

Incidentally, I discovered through the paper the existence of the Kumaraswamy distribution, which main appeal seems to be the ability to produce a closed-form quantile function, while bearing some resemblance with the Beta distribution. (Another arXival by Baltasar Trancón y Widemann studies some connections between those, but does not tell how to select the parameters to optimise the similarity.)

exam question

Posted in Kids, Statistics, University life with tags , , , , , , , , , on June 24, 2016 by xi'an

exo2A question for my third year statistics exam that I borrowed from Cross Validated: no student even attempted to solve this question…!

And another one borrowed from the highly popular post on the random variable [almost] always smaller than its mean!

ISBA 2016 [#4]

Posted in pictures, Running, Statistics, Travel with tags , , , , , , , , , , on June 17, 2016 by xi'an

As an organiser of the ABC session (along with Paul Fearnhead), I was already aware of most results behind the talks, but nonetheless got some new perspectives from the presentations. Ewan Cameron discussed a two-stage ABC where the first step is actually an indirect inference inference, which leads to a more efficient ABC step. With applications to epidemiology. Lu presented extensions of his work with Paul Fearnhead, incorporating regression correction à la Beaumont to demonstrate consistency and using defensive sampling to control importance sampling variance. (While we are working on a similar approach, I do not want to comment on the consistency part, but I missed how defensive sampling can operate in complex ABC settings, as it requires advanced knowledge on the target to be effective.) And Ted Meeds spoke about two directions for automatising ABC (as in the ABcruise), from incorporating the pseudo-random generator into the representation of the ABC target, to calling for deep learning advances. The inclusion of random generators in the transform is great, provided they can remain black boxes as otherwise they require recoding. (This differs from quasi-Monte Carlo ABC, which aims at reducing the variability due to sheer noise.) It took me a little while, but I eventually understood why Jan Haning saw this inclusion as a return to fiducial inference!

Merlise Clyde gave a wide-ranging plenary talk on (linear) model selection that looked at a large range of priors under the hat of generalised confluent hypergeometric priors over the mixing scale in Zellner’s g-prior. Some were consistent under one or both models, maybe even for misspecified models. Some parts paralleled my own talk on the foundations of Bayesian tests, no wonder since I mostly give a review before launching into a criticism of the Bayes factor. Since I think this may be a more productive perspective than trying to over-come the shortcomings of Bayes factors in weakly informative settings. Some comments at the end of Merlise’s talk were loosely connected to this view in that they called for an unitarian perspective [rather than adapting a prior to a specific inference problem] with decision-theoretic backup. Conveniently the next session was about priors and testing, obviously connected!, with Leo Knorr-Held considering g-priors for the Cox model, Kerrie Mengersen discussing priors for over-fitted mixtures and HMMs, and Dan Simpson entertaining us with his quest of a prior for a point process, eventually reaching PC priors.

precision in MCMC

Posted in Books, R, Statistics, University life with tags , , , , , , , , , on January 14, 2016 by xi'an

presisio21 presisio22

While browsing Images des Mathématiques, I came across this article [in French] that studies the impact of round-off errors on number representations in a dynamical system and checked how much this was the case for MCMC algorithms like the slice sampler (recycling some R code from Monte Carlo Statistical Methods). By simply adding a few signif(…,dig=n) in the original R code. And letting the precision n vary.

presisio31 presisio32

“…si on simule des trajectoires pendant des intervalles de temps très longs, trop longs par rapport à la précision numérique choisie, alors bien souvent, les résultats des simulations seront complètement différents de ce qui se passe en réalité…” Pierre-Antoine Guihéneuf

Rather unsurprisingly (!), using a small enough precision (like two digits on the first row) has a visible impact on the simulation of a truncated normal. Moving to three digits seems to be sufficient in this example… One thing this tiny experiment reminds me of is the lumpability property of Kemeny and Snell.  A restriction on Markov chains for aggregated (or discretised) versions to be ergodic or even Markov. Also, in 2000, Laird Breyer, Gareth Roberts and Jeff Rosenthal wrote a Statistics and Probability Letters paper on the impact of round-off errors on geometric ergodicity. However, I presume [maybe foolishly!] that the result stated in the original paper, namely that there exists an infinite number of precision digits for which the dynamical system degenerates into a small region of the space does not hold for MCMC. Maybe foolishly so because the above statement means that running a dynamical system for “too” long given the chosen precision kills the intended stationary properties of the system. Which I interpret as getting non-ergodic behaviour when exceeding the period of the uniform generator. More or less.

presisio91 presisio92

Optimization Monte Carlo: Efficient and embarrassingly parallel likelihood-free inference

Posted in Books, Statistics, Travel with tags , , , , , , , , on December 16, 2015 by xi'an

optiMC1AmstabcTed Meeds and Max Welling have not so recently written about an embarrassingly parallel approach to ABC that they call optimisation Monte Carlo. [Danke Ingmar for pointing out the reference to me.] They start from a rather innocuous rephrasing of the ABC posterior, writing the pseudo-observations as deterministic transforms of the parameter and of a vector of uniforms. Innocuous provided this does not involve an infinite number of uniforms, obviously. Then they suddenly switch to the perspective that, for a given uniform vector u, one should seek the parameter value θ that agrees with the observation y. A sort of Monte Carlo inverse regression: if

y=f(θ,u),

then invert this equation in θ. This is quite clever! Maybe closer to fiducial than true Bayesian statistics, since the prior does not occur directly [only as a weight p(θ)], but if this is manageable [and it all depends on the way f(θ,u) is constructed], this should perform better than ABC! After thinking about it a wee bit more in London, though, I realised this was close to impossible in the realistic examples I could think of. But I still like the idea and want to see if anything at all can be made of this…

“However, it is hard to detect if our optimization succeeded and we may therefore sometimes reject samples that should not have been rejected. Thus, one should be careful not to create a bias against samples u for which the optimization is difficult. This situation is similar to a sampler that will not mix to remote local optima in the posterior distribution.”

Now, the paper does not go that way but keeps the ε-ball approach as in regular ABC, to derive an approximation of the posterior density. For a while I was missing the difference between the centre of the ball and the inverse of the above equation, bottom of page 3. But then I realised the former was an approximation to the latter. When the authors discuss their approximation in terms of the error ε, I remain unconvinced by the transfer of the tolerance to the optimisation error, as those are completely different notions. This also applies to the use of a Jacobian in the weight, which seems out of place since this Jacobian appears in a term associated with (or replacing) the likelihood, f(θ,u), which is then multiplied by the prior p(θ). (Assuming a Jacobian exists, which is unclear when considering most simulation patterns use hard bounds and indicators.) When looking at the toy examples, it however makes sense to have a Jacobian since the selected θ’s are transforms of the u’s. And the p(θ)’s are simply importance weights correcting for the wrong target. Overall, the appeal of the method proposed in the paper remains unclear to me. Most likely because I did not spend enough time over it.

quantile functions: mileage may vary

Posted in Books, R, Statistics with tags , , , , , , on May 12, 2015 by xi'an

When experimenting with various quantiles functions in R, I was shocked [ok this is a bit excessive, let us say surprised] by how widely the execution times would vary. To the point of blaming a completely different feature of R. Borrowing from Charlie Geyer’s webpage on the topic of probability distributions in R, here is a table for some standard distributions: I ran

u=runif(1e7)
system.time(x<-qcauchy(u))

choosing an arbitrary parameter whenever needed.

Distribution Function Time
Cauchy qcauchy 2.2
Chi-Square qchisq 43.8
Exponential qexp 0.95
F qf 34.2
Gamma qgamma 37.2
Logistic qlogis 1.7
Log Normal qlnorm 2.2
Normal qnorm 1.4
Student t qt 31.7
Uniform qunif 0.86
Weibull qweibull 2.9

Of course, it does not mean much in that all the slow distributions (except for Weibull) are parameterised. Nonetheless, that a chi-square inversion take 50 times longer than a uniform inversion remains puzzling as to why it is not coded more efficiently. In particular, I was wondering why the chi-square inversion was slower than the Gamma inversion. Rerunning both inversions showed that they are equivalent:

> u=runif(1e7)
> system.time(x<-qgamma(u,sha=1.5))
utilisateur système écoulé
 21.534 0.016 21.532
> system.time(x<-qchisq(u,df=3))
utilisateur système écoulé
21.372 0.008 21.361

Which also shows how variable system.time can be.

Follow

Get every new post delivered to your Inbox.

Join 1,079 other followers