**T**here is a conference on mixtures (M) and hidden Markov models (H) and clustering (C) taking place in Orsay on June 17-19, next year. Registration is free if compulsory. With about twenty confirmed speakers. (Irrelevant as the following remark is, this is the opportunity to recall the conference on mixtures I organised in Aussois 25 years before! Which website is amazingly still alive at Duke, thanks to Mike West, my co-organiser along with Kathryn Roeder and Gilles Celeux. When checking the abstracts, I found only two presenters common to both conferences, Christophe Biernaki and Jiahua Chen. And alas several names of departed friends.)

## Archive for mixtures of distributions

## MHC2020

Posted in pictures, Statistics, Travel, University life with tags clustering, conference, France, French Alps, hidden Markov models, Institut de Mathématique d'Orsay, mixtures of distributions, Orsay, Paris suburbs, Savoie, Yvette on October 15, 2019 by xi'an## from here to infinity

Posted in Books, Statistics, Travel with tags Bayesian inference, classification, Clermont-Ferrand, clustering, Dirichlet process mixture, From Here to Infinity, hyperparameter, Ian Stewart, label switching, mixtures of distributions, prior distributions, sparse finite mixtures, University of Warwick, Vienna on September 30, 2019 by xi'an

“Introducing a sparsity prior avoids overfitting the number of clusters not only for finite mixtures, but also (somewhat unexpectedly) for Dirichlet process mixtures which are known to overfit the number of clusters.”

**O**n my way back from Clermont-Ferrand, in an old train that reminded me of my previous ride on that line that took place in… 1975!, I read a fairly interesting paper published in Advances in Data Analysis and Classification by [my Viennese friends] Sylvia Früwirth-Schnatter and Gertrud Malsiner-Walli, where they describe how sparse finite mixtures and Dirichlet process mixtures can achieve similar results when clustering a given dataset. Provided the hyperparameters in both approaches are calibrated accordingly. In both cases these hyperparameters (scale of the Dirichlet process mixture versus scale of the Dirichlet prior on the weights) are endowed with Gamma priors, both depending on the number of components in the finite mixture. Another interesting feature of the paper is to witness how close the related MCMC algorithms are when exploiting the stick-breaking representation of the Dirichlet process mixture. With a resolution of the label switching difficulties via a point process representation and k-mean clustering in the parameter space. *[The title of the paper is inspired from Ian Stewart’s book.]*

## the most probable cluster

Posted in Books, Statistics with tags Bayesian Analysis, clustering, Dirichlet process Gaussian mixture, MAP estimators, mixtures of distributions, NP-complete problem, penalised likelihood on July 11, 2019 by xi'anIn the last issue of Bayesian Analysis, Lukasz Rajkowski studies the most likely (MAP) cluster associated with the Dirichlet process mixture model. Reminding me that most Bayesian estimates of the number of clusters are not consistent (when the sample size grows to infinity). I am always puzzled by this problem, as estimating the number of clusters sounds like an ill-posed problem, since it is growing with the number of observations, by definition of the Dirichlet process. For instance, the current paper establishes that the number of clusters intersecting a given compact set remains bounded. (The setup is one of a Normal Dirichlet process mixture with constant and known covariance matrix.)

Since the posterior probability of a given partition of {1,2,…,n} can be (formally) computed, the MAP estimate can be (formally) derived. I inserted *formally* in the previous sentence as the derivation of the exact MAP is an NP hard problem in the number n of observations. As an aside, I have trouble with the author’s argument that the convex hulls of the clusters should be disjoin: I do not see why they should when the mixture components are overlapping. (More generally, I fail to relate to notions like “bad clusters” or “overestimation of the number of clusters” or a “sensible choice” of the covariance matrix.) More globally, I am somewhat perplexed by the purpose of the paper and the relevance of the MAP estimate, even putting aside my generic criticisms of the MAP approach. No uncertainty is attached to the estimator, which thus appears as a form of penalised likelihood strategy rather than a genuinely Bayesian (Analysis) solution.

The first example in the paper is using data from a Uniform over (-1,1), concluding at a “misleading” partition by the MAP since it produces more than one cluster. I find this statement flabbergasting as the generative model is not the estimated model. To wit, the case of an exponential Exp(1) sample that cannot reach a maximum of the target function with a finite number of sample. Which brings me back full-circle to my general unease about clustering in that much more seems to be assumed about this notion than what the statistical model delivers.

## O’Bayes 19/1 [snapshots]

Posted in Books, pictures, Statistics, University life with tags ABC algorithm, Bayesian decision theory, clustering, Galaxy, imprecise probabilities, indoor swimming, Jeffreys-Lindley paradox, loss functions, maximum entropy, mixtures of distributions, O'Bayes 2019, objective Bayes, PC priors, prior assessment, score function, Society for Imprecise Probability, University of Warwick, Valencia meeting on June 30, 2019 by xi'an**A**lthough the tutorials of O’Bayes 2019 of yesterday were poorly attended, albeit them being great entries into objective Bayesian model choice, recent advances in MCMC methodology, and the multiple layers of BART, for which I have to blame myself for sticking the beginning of O’Bayes too closely to the end of BNP as only the most dedicated could achieve the commuting from Oxford to Coventry to reach Warwick in time, the first day of talks were well attended, despite weekend commitments, conference fatigue, and perfect summer weather! Here are some snapshots from my bench (and apologies for not covering better the more theoretical talks I had trouble to follow, due to an early and intense morning swimming lesson! Like Steve Walker’s utility based derivation of priors that generalise maximum entropy priors. But being entirely independent from the model does not sound to me like such a desirable feature… And Natalia Bochkina’s Bernstein-von Mises theorem for a location scale semi-parametric model, including a clever construct of a mixture of two Dirichlet priors to achieve proper convergence.)

Jim Berger started the day with a talk on imprecise probabilities, involving the society for imprecise probability, which I discovered while reading Keynes’ book, with a neat resolution of the Jeffreys-Lindley paradox, when re-expressing the null as an imprecise null, with the posterior of the null no longer converging to one, with a limit depending on the prior modelling, if involving a prior on the bias as well, with Chris discussing the talk and mentioning a recent work with Edwin Fong on reinterpreting marginal likelihood as exhaustive X validation, summing over all possible subsets of the data [using log marginal predictive].Håvard Rue did a follow-up talk from his Valencià O’Bayes 2015 talk on PC-priors. With a pretty hilarious introduction on his difficulties with constructing priors and counseling students about their Bayesian modelling. With a list of principles and desiderata to define a reference prior. However, I somewhat disagree with his argument that the Kullback-Leibler distance from the simpler (base) model cannot be scaled, as it is essentially a log-likelihood. And it feels like multivariate parameters need some sort of separability to define distance(s) to the base model since the distance somewhat summarises the whole departure from the simpler model. (Håvard also joined my achievement of putting an ostrich in a slide!) In his discussion, Robin Ryder made a very pragmatic recap on the difficulties with constructing priors. And pointing out a natural link with ABC (which brings us back to Don Rubin’s motivation for introducing the algorithm as a formal thought experiment).

Sara Wade gave the final talk on the day about her work on Bayesian cluster analysis. Which discussion in Bayesian Analysis I alas missed. Cluster estimation, as mentioned frequently on this blog, is a rather frustrating challenge despite the simple formulation of the problem. (And I will not mention Larry’s tequila analogy!) The current approach is based on loss functions directly addressing the clustering aspect, integrating out the parameters. Which produces the interesting notion of neighbourhoods of partitions and hence credible balls in the space of partitions. It still remains unclear to me that cluster estimation is at all achievable, since the partition space explodes with the sample size and hence makes the most probable cluster more and more unlikely in that space. Somewhat paradoxically, the paper concludes that estimating the cluster produces a more reliable estimator on the number of clusters than looking at the marginal distribution on this number. In her discussion, Clara Grazian also pointed the ambivalent use of clustering, where the intended meaning somehow diverges from the meaning induced by the mixture model.

## a book and two chapters on mixtures

Posted in Books, Statistics, University life with tags astrostatistics, Bayesian model choice, book review, clustering, CRC Press, Gibbs sampling, handbook of mixture analysis, Handbooks of Modern Statistical Methods, hidden Markov models, MCMC, mixtures of distributions, mixtures of experts, reversible jump MCMC, unknown number of components on January 8, 2019 by xi'an**T**he Handbook of Mixture Analysis is now out! After a few years of planning, contacts, meetings, discussions about notations, interactions with authors, further interactions with late authors, repeating editing towards homogenisation, and a final professional edit last summer, this collection of nineteen chapters involved thirty-five contributors. I am grateful to all participants to this piece of work, especially to Sylvia Früwirth-Schnatter for being a driving force in the project and for achieving a much higher degree of homogeneity in the book than I expected. I would also like to thank Rob Calver and Lara Spieker of CRC Press for their boundless patience through the many missed deadlines and their overall support.

Two chapters which I co-authored are now available as arXived documents:

5. Gilles Celeux, Kaniav Kamary, Gertraud Malsiner-Walli, Jean-Michel Marin, and Christian P. Robert, Computational Solutions for Bayesian Inference in Mixture Models

7. Gilles Celeux, Sylvia Früwirth-Schnatter, and Christian P. Robert, Model Selection for Mixture Models – Perspectives and Strategies

along other chapters

1. Peter Green, Introduction to Finite Mixtures

8. Bettina Grün, Model-based Clustering

12. Isobel Claire Gormley and Sylvia Früwirth-Schnatter, Mixtures of Experts Models

13. Sylvia Kaufmann, Hidden Markov Models in Time Series, with Applications in Economics

14. Elisabeth Gassiat, Mixtures of Nonparametric Components and Hidden Markov Models

19. Michael A. Kuhn and Eric D. Feigelson, Applications in Astronomy

## optimal proposal for ABC

Posted in Statistics with tags ABC, ABC-PMC, ABC-SMC, adaptive importance sampling, Bayesian Analysis, computational astrophysics, effective sample size, Ewan Cameron, kernel density estimator, Kullback-Leibler divergence, mixtures of distributions on October 8, 2018 by xi'an**A**s pointed out by Ewan Cameron in a recent c’Og’ment, Justin Alsing, Benjamin Wandelt, and Stephen Feeney have arXived last August a paper where they discuss an optimal proposal density for ABC-SMC and ABC-PMC. Optimality being understood as maximising the effective sample size.

“Previous studies have sought kernels that are optimal in the (…) Kullback-Leibler divergence between the proposal KDE and the target density.”

The effective sample size for ABC-SMC is actually the regular ESS multiplied by the fraction of accepted simulations. Which surprisingly converges to the ratio

**E**[q(θ)/π(θ)|**D**]/**E**[π(θ)/q(θ)|**D**]

under the (true) posterior. (Where q(θ) is the importance density and π(θ) the prior density.] When optimised in q, this usually produces an implicit equation which results in a form of geometric mean between posterior and prior. The paper looks at approximate ways to find this optimum. Especially at an upper bound on q. Something I do not understand from the simulations is that the starting point seems to be the plain geometric mean between posterior and prior, in a setting where the posterior is supposedly unavailable… Actually the paper is silent on how the optimal can be approximated in practice, for the very reason I just mentioned. Apart from using a non-parametric or mixture estimate of the posterior after each SMC iteration, which may prove extremely costly when processed through the optimisation steps. However, an interesting if side outcome of these simulations is that the above geometric mean does much better than the posterior itself when considering the effective sample size.