Archive for sparsity

optimal choice among MCMC kernels

Posted in Statistics with tags , , , , , , , , , , on March 14, 2019 by xi'an

Last week in Siem Reap, Florian Maire [who I discovered originates from a Norman town less than 10km from my hometown!] presented an arXived joint work with Pierre Vandekerkhove at the Data Science & Finance conference in Cambodia that considers the following problem: Given a large collection of MCMC kernels, how to pick the best one and how to define what best means. Going by mixtures is a default exploration of the collection, as shown in (Tierney) 1994 for instance since this improves on both kernels (esp. when each kernel is not irreducible on its own!). This paper considers a move to local weights in the mixture, weights that are not estimated from earlier simulations, contrary to what I first understood.

As made clearer in the paper the focus is on filamentary distributions that are concentrated nearby lower-dimension sets or manifolds Since then the components of the kernel collections can be restricted to directions of these manifolds… Including an interesting case of a 2-D highly peaked target where converging means mostly simulating in x¹ and covering the target means mostly simulating in x². Exhibiting a schizophrenic tension between the two goals. Weight locally dependent means correction by Metropolis step, with cost O(n). What of Rao-Blackwellisation of these mixture weights, from weight x transition to full mixture, as in our PMC paper? Unclear to me as well [during the talk] is the use in the mixture of basic Metropolis kernels, which are not absolutely continuous, because of the Dirac mass component. But this is clarified by Section 5 in the paper. A surprising result from the paper (Corollary 1) is that the use of local weights ω(i,x) that depend on the current value of the chain does jeopardize the stationary measure π(.) of the mixture chain. Which may be due to the fact that all components of the mixture are already π-invariant. Or that the index of the kernel constitutes an auxiliary (if ancillary)  variate. (Algorithm 1 in the paper reminds me of delayed acceptance. Making me wonder if computing time should be accounted for.) A final question I briefly discussed with Florian is the extension to weights that are automatically constructed from the simulations and the target.

JSM 2018 [#1]

Posted in Mountains, Statistics, Travel, University life with tags , , , , , , , , , , on July 30, 2018 by xi'an

As our direct flight from Paris landed in the morning in Vancouver,  we found ourselves in the unusual situation of a few hours to kill before accessing our rental and where else better than a general introduction to deep learning in the first round of sessions at JSM2018?! In my humble opinion, or maybe just because it was past midnight in Paris time!, the talk was pretty uninspiring in missing the natural question of the possible connections between the construction of a prediction function and statistics. Watching improving performances at classifying human faces does not tell much more than creating a massively non-linear function in high dimensions with nicely designed error penalties. Most of the talk droned about neural networks and their fitting by back-propagation and the variations on stochastic gradient descent. Not addressing much rather natural (?) questions about choice of functions at each level, of the number of levels, of the penalty term, or regulariser, and even less the reason why no sparsity is imposed on the structure, despite the humongous number of parameters involved. What came close [but not that close] to sparsity is the notion of dropout, which is a sort of purely automated culling of the nodes, and which was new to me. More like a sort of randomisation that turns the optimisation criterion in an average. Only at the end of the presentation more relevant questions emerged, presenting unsupervised learning as density estimation, the pivot being the generative features of (most) statistical models. And GANs of course. But nonetheless missing an explanation as to why models with massive numbers of parameters can be considered in this setting and not in standard statistics. (One slide about deterministic auto-encoders was somewhat puzzling in that it seemed to repeat the “fiducial mistake”.)

expectation-propagation from Les Houches

Posted in Books, Mountains, pictures, Statistics, University life with tags , , , , , , , , , , on February 3, 2016 by xi'an

ridge6As CHANCE book editor, I received the other day from Oxford University Press acts from an École de Physique des Houches on Statistical Physics, Optimisation, Inference, and Message-Passing Algorithms that took place there in September 30 – October 11, 2013.  While it is mostly unrelated with Statistics, and since Igor Caron already reviewed the book a year and more ago, I skimmed through the few chapters connected to my interest, from Devavrat Shah’s chapter on graphical models and belief propagation, to Andrea Montanari‘s denoising and sparse regression, including LASSO, and only read in some detail Manfred Opper’s expectation propagation chapter. This paper made me realise (or re-realise as I had presumably forgotten an earlier explanation!) that expectation propagation can be seen as a sort of variational approximation that produces by a sequence of iterations the distribution within a certain parametric (exponential) family that is the closest to the distribution of interest. By writing the Kullback-Leibler divergence the opposite way from the usual variational approximation, the solution equates the expectation of the natural sufficient statistic under both models… Another interesting aspect of this chapter is the connection with estimating normalising constants. (I noticed a slight typo on p.269 in the final form of the Kullback approximation q() to p().

JSM 2015 [day #2]

Posted in Books, R, Statistics, Travel, University life with tags , , , , , , , , , , , , , on August 11, 2015 by xi'an

Today, at JSM 2015, in Seattle, I attended several Bayesian sessions, having sadly missed the Dennis Lindley memorial session yesterday, as it clashed with my own session. In the morning sessions on Bayesian model choice, David Rossell (Warwick) defended non-local priors à la Johnson (& Rossell) as having better frequentist properties. Although I appreciate the concept of eliminating a neighbourhood of the null in the alternative prior, even from a Bayesian viewpoint since it forces us to declare explicitly when the null is no longer acceptable, I find the asymptotic motivation for the prior less commendable and open to arbitrary choices that may lead to huge variations in the numerical value of the Bayes factor. Another talk by Jin Wang merged spike and slab with EM with bootstrap with random forests in variable selection. But I could not fathom what the intended properties of the method were… Besides returning another type of MAP.

The second Bayesian session of the morn was mostly centred on sparsity and penalisation, with Carlos Carvalho and Rob McCulloch discussing a two step method that goes through a standard posterior  construction on the saturated model, before using a utility function to select the pertinent variables. Separation of utility from prior was a novel concept for me, if not for Jay Kadane who objected to Rob a few years ago that he put in the prior what should be in the utility… New for me because I always considered the product prior x utility as the main brick in building the Bayesian edifice… Following Herman Rubin’s motto! Veronika Rocková linked with this post-LASSO perspective by studying spike & slab priors based on Laplace priors. While Veronicka’s goal was to achieve sparsity and consistency, this modelling made me wonder at the potential equivalent in our mixtures for testing approach. I concluded that having a mixture of two priors could be translated in a mixture over the sample with two different parameters, each with a different prior. A different topic, namely multiple testing, was treated by Jim Berger, who showed convincingly in my opinion that a Bayesian approach provides a significant advantage.

In the afternoon finalists of the ISBA Savage Award presented their PhD work, both in the theory and  methods section and in the application section. Besides Veronicka Rocková’s work on a Bayesian approach to factor analysis, with a remarkable resolution via a non-parametric Indian buffet prior and a variable selection interpretation that avoids MCMC difficulties, Vinayak Rao wrote his thesis on MCMC methods for jump processes with a finite number of observations, using a highly convincing completion scheme that created independence between blocks and which reminded me of the Papaspiliopoulos et al. (2005) trick for continuous time processes. I do wonder at the potential impact of this method for processing the coalescent trees in population genetics. Two talks dealt with inference on graphical models, Masanao Yajima and  Christine Peterson, inferring the structure of a sparse graph by Bayesian methods.  With applications in protein networks. And with again a spike & slab prior in Christine’s work. The last talk by Sayantan Banerjee was connected to most others in this Savage session in that it also dealt with sparsity. When estimating a large covariance matrix. (It is always interesting to try to spot tendencies in awards and conferences. Following the Bayesian non-parametric era, are we now entering the Bayesian sparsity era? We will see if this is the case at ISBA 2016!) And the winner is..?! We will know tomorrow night! In the meanwhile, congrats to my friends Sudipto Banerjee, Igor Prünster, Sylvia Richardson, and Judith Rousseau who got nominated IMS Fellows tonight.

top model choice week (#3)

Posted in Statistics, University life with tags , , , , , , , , , , , on June 19, 2013 by xi'an

La Défense and Maison-Lafitte from my office, Université Paris-Dauphine, Nov. 05, 2011To conclude this exciting week, there will be a final seminar by Veronika Rockovà (Erasmus University) on Friday, June 21, at 11am at ENSAE  in Room 14. Here is her abstract:

11am: Fast Dynamic Posterior Exploration for Factor Augmented Multivariate Regression byVeronika Rockova

Advancements in high-throughput experimental techniques have facilitated the availability of diverse genomic data, which provide complementary information regarding the function and organization of gene regulatory mechanisms. The massive accumulation of data has increased demands for more elaborate modeling approaches that combine the multiple data platforms. We consider a sparse factor regression model, which augments the multivariate regression approach by adding a latent factor structure, thereby allowing for dependent patterns of marginal covariance between the responses. In order to enable the identi cation of parsimonious structure, we impose spike and slab priors on the individual entries in the factor loading and regression matrices. The continuous relaxation of the point mass spike and slab enables the implementation of a rapid EM inferential procedure for dynamic posterior model exploration. This is accomplished by considering a nested sequence of spike and slab priors and various factor space cardinalities. Identi ed candidate models are evaluated by a conditional posterior model probability criterion, permitting trans-dimensional comparisons. Patterned sparsity manifestations such as an orthogonal allocation of zeros in factor loadings are facilitated by structured priors on the binary inclusion matrix. The model is applied to a problem of integrating two genomic datasets, where expression of microRNA’s is related to the expression of genes with an underlying connectivity pathway network.

%d bloggers like this: