Archive for George Casella

reading classics (#9,10)

Posted in Books, Kids, Statistics, University life with tags , , , , , , , , , , , , on January 28, 2014 by xi'an

La Défense from Paris-Dauphine, Nov. 15, 2012Today was the very last session of our Reading Classics Seminar for the academic year 2013-2014. We listened two presentations, one on the Casella and Strawderman (1984) paper on the estimation of the normal bounded mean. And one on the Hartigan and Wong’s 1979 K-Means Clustering Algorithm paper in JRSS C. The first presentation did not go well as my student had difficulties with the maths behind the paper. (As he did not come to ask me or others for help, it may well be that he put this talk together at the last minute, at a time busy with finals and project deliveries. He also failed to exploit those earlier presentations of the paper.) The innovative part in the talk was the presentation of several R simulations comparing the risk of the minimax Bayes estimator with the one for the MLE. Although the choice of simulating different samples of standard normals for different values of the parameters and even for both estimators made the curves (unnecessarily) all wiggly.

By contrast, the second presentation was very well-designed, with great Beamer slides, interactive features and a software oriented focus. My student Mouna Berrada started from the existing R function kmeans to explain the principles of the algorithm, recycling the interactive presentation of last year as well (with my permission), and creating a dynamic flowchart that was most helpful. So she made the best of this very short paper! Just (predictably) missing the question of the statistical model behind the procedure. During the discussion, I mused why k-medians clustering was not more popular as it offered higher robustness guarantees, albeit further away from a genuine statistical model. And why k-means clustering was not more systematically compared with mixture (EM) estimation.

Here are the slides for the second talk

from statistical evidence to evidence of causality

Posted in Books, Statistics with tags , , , , , , , , , on December 24, 2013 by xi'an

I took the opportunity of having to wait at a local administration a long while today (!) to read an arXived paper by Dawid, Musio and Fienberg on the−both philosophical and practical−difficulty to establish the probabilities of the causes of effects. The first interesting thing about the paper is that it relates to the Médiator drug scandal that took place in France in the past year and still is under trial: thanks to the investigations of a local doctor, Irène Frachon, the drug was exposed as an aggravating factor for heart disease. Or maybe the cause. The case-control study of Frachon summarises into a 2×2 table with a corrected odds ratio of 17.1. From there, the authors expose the difficulties of drawing inference about causes of effects, i.e. causality, an aspect of inference that has always puzzled me. (And the paper led me to search for the distinction between odds ratio and risk ratio.)

“And the conceptual and implementational difficulties that we discuss below, that beset even the simplest case of inference about causes of effects, will be hugely magnified when we wish to take additional account of such policy considerations.”

A third interesting notion in the paper is the inclusion of counterfactuals. My introduction to counterfactuals dates back to a run in the back-country roads around Ithaca, New York, when George told me about a discussion paper from Phil he was editing for JASA on that notion with his philosopher neighbour Steven Schwartz as a discussant. (It was a great run, presumably in the late Spring. And the best introduction I could dream of!) Now, the paper starts from the counterfactual perspective to conclude that inference is close to impossible in this setting. Within my limited understanding, I would see that as a drawback of using counterfactuals, rather than of drawing inference about causes. If the corresponding statistical model is nonindentifiable, because one of the two responses is always missing, the model seems inappropriate. I am also surprised at the notion of “sufficiency” used in the paper, since it sounds like the background information cancels the need to account for the treatment (e.g., aspirin) decision.  The fourth point is the derivation of bounds on the probabilities of causation, despite everything! Quite an interesting read thus!

ciao, George!

Posted in pictures, Running, Travel, University life with tags , , , , on September 7, 2013 by xi'an

IMG_1769

Rによるモンテカルロ法入門

Posted in Books, R, Statistics with tags , , on May 14, 2013 by xi'an

Here is the cover of the Japanese translation of our Introducing Monte Carlo methods with R book.  A few year after the French translation. It actually appeared last year in August but I was not informed of this till a few weeks ago. The publisher is Maruzen, with an associated webpage if you want to order… Unless I am confused the translators are Hiro Ishida and Kazue Ishida; they deserve a major ありがとう ! And too bad George is no longer with us: this must have been the first translation of one of his books in Japanese..

Do we need…yes we do (with some delay)!

Posted in Books, Statistics, University life with tags , , , , , , on April 4, 2013 by xi'an

Sometimes, if not that often, I forget about submitted papers to the point of thinking they are already accepted. This happened with the critical analysis of Murray Aitkin’s book Statistical Inference, already debated on the ‘Og, written with Andrew Gelman and Judith Rousseau, and resubmitted to Statistics and Risk Modeling in November…2011. As I had received a few months ago a response to our analysis from Murray, I was under the impression it was published or about to be published. Earlier this week I started looking for the reference in connection with the paper I was completing on the Jeffreys-Lindley paradox and could not find it. Checking emails on that topic I then discovered the latest one was from Novtember 2011 and the editor, when contacted, confirmed the paper was still under review! As it got accepted only a few hours later, my impression is that it had been misfiled and forgotten at some point, an impression reinforced by an earlier experience with the previous avatar of the journal, Statistics & Decisions. In the 1990′s George Casella and I had had a paper submitted to this journal for a while, which eventually got accepted. Then nothing happened for a year and more, until we contacted the editor who acknowledged the paper had been misfiled and forgotten! (This was before the electronic processing of papers, so it is quite plausible that the file corresponding to our accepted paper went under a drawer or into the wrong pile and that the editor was not keeping track of those accepted papers. After all, until Series B turned submission into an all-electronic experience, I was using a text file to keep track of daily submissions…) If you knew George, you can easily imagine his reaction when reading this reply… Anyway, all is well that ends well in that our review and Murray’s reply will appear in Statistics and Risk Modeling, hopefully in a reasonable delay.

Follow

Get every new post delivered to your Inbox.

Join 558 other followers