Archive for BayesComp 2020

stratified ABC [One World ABC webinar]

Posted in Books, Statistics, University life with tags , , , , , , , , on May 15, 2020 by xi'an

The third episode of the One World ABC seminar (Season 1!) was kindly delivered by Umberto Picchini on Stratified sampling and bootstrapping for ABC which I already if briefly discussed after BayesComp 2020. Which sounds like a million years ago… His introduction on the importance of estimating the likelihood using a kernel, while 600% justified wrt his talk, made the One World ABC seminar sounds almost like groundhog day!  The central argument is in the computational gain brought by simulating a single θ dependent [expensive] dataset followed by [cheaper] bootstrap replicates. Which turns de fact into bootstrapping the summary statistics.

If I understand correctly, the post-stratification approach of Art Owen (2013?, I cannot find the reference) corrects a misrepresentation of mine. Indeed, defining a partition with unknown probability weights seemed to me to annihilate the appeal of stratification, because the Bernoulli variance of the estimated probabilities brought back the same variability as the mother estimator. But with bootstrap, this requires only two simulations, one for the weights and one for the target. And further allows for a larger ABC tolerance in fine. Free lunch?!

The speaker in two weeks (21 May or Ascension Thursday!) is my friend and co-author Gael Martin from Monash University, who will speak on Focused Bayesian prediction, at quite a late time down under..!

off to BayesComp 20, Gainesville

Posted in pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , on January 7, 2020 by xi'an

estimating the marginal likelihood (or an information criterion)

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , , , , on December 28, 2019 by xi'an

Tory Imai (from Kyoto University) arXived a paper last summer on what first looked like a novel approximation of the marginal likelihood. Based on the variance of thermodynamic integration. The starting argument is that there exists a power 0<t⁰<1 such that the expectation of the logarithm of the product of the prior by the likelihood to the power t⁰ or t⁰-powered likelihood  is equal to the standard log-marginal

\log m(x) = \mathbb{E}^{t^0}[ \log f(X|\theta) ]

when the expectation is under the posterior corresponding to the t⁰-powered likelihood (rather than the full likelihood). By an application of the mean value theorem. Watanabe’s (2013) WBIC replaces the optimum t⁰ with 1/log(n), n being the sample size. The issue in terms of computational statistics is of course that the error of WBIC (against the true log m(x)) is only characterised as an order of n.

The second part of the paper is rather obscure to me, as the motivation for the real log canonical threshold is missing, even though the quantity is connected with the power likelihood. And the DIC effective dimension. It then goes on to propose a new approximation of sBIC, where s stands for singular, of Drton and Plummer (2017) which I had missed (and may ask my colleague Martin later today at Warwick!). Quickly reading through the later however brings explanations about the real log canonical threshold being simply the effective dimension in Schwarwz’s BIC approximation to the log marginal,

\log m(x) \approx= \log f(x|\hat{\theta}_n) - \lambda \log n +(m-1)\log\log n

(as derived by Watanabe), where m is called the multiplicity of the real log canonical threshold. Both λ and m being unknown, Drton and Plummer (2017) estimate the above approximation in a Bayesian fashion, which leads to a double indexed marginal approximation for a collection of models. Since this thread leads me further and further from a numerical resolution of the marginal estimation, but brings in a different perspective on mixture Bayesian estimation, I will return to this highly  in a later post. The paper of Imai discusses a different numerical approximation to sBIC, With a potential improvement in computing sBIC. (The paper was proposed as a poster to BayesComp 2020, so I am looking forward discussing it with the author.)


BayesComp 2020 at a glance

Posted in Statistics, Travel, University life with tags , , , , , , , , , , , , , , , , on December 18, 2019 by xi'an

BayesComp 20 [schedule]

Posted in Books, Kids, pictures, R, Statistics, Travel, University life with tags , , , , , , , , , , , on November 20, 2019 by xi'an

The schedule for the program is now available on the conference webpage of BayesComp 20, for the days of 7-10 Jan 2020. There are twelve invited sessions, including one j-ISBA session, and a further thirteen contributed sessions were selected by the scientific committee. And two tutorials on the first day. Looking forward seeing you in Florida! (Poster submissions still welcomed!)