Archive for Bernstein-von Mises theorem

BayesComp²³ [aka MCMski⁶]

Posted in Books, Mountains, pictures, Running, Statistics, Travel, University life with tags , , , , , , , , , , , , , , , , , , , on March 20, 2023 by xi'an

The main BayesComp meeting started right after the ABC workshop and went on at a grueling pace, and offered a constant conundrum as to which of the four sessions to attend, the more when trying to enjoy some outdoor activity during the lunch breaks. My overall feeling is that it went on too fast, too quickly! Here are some quick and haphazard notes from some of the talks I attended, as for instance the practical parallelisation of an SMC algorithm by Adrien Corenflos, the advances made by Giacommo Zanella on using Bayesian asymptotics to assess robustness of Gibbs samplers to the dimension of the data (although with no assessment of the ensuing time requirements), a nice session on simulated annealing, from black holes to Alps (if the wrong mountain chain for Levi), and the central role of contrastive learning à la Geyer (1994) in the GAN talks of Veronika Rockova and Éric Moulines. Victor  Elvira delivered an enthusiastic talk on our massively recycled importance on-going project that we need to complete asap!

While their earlier arXived paper was on my reading list, I was quite excited by Nicolas Chopin’s (along with Mathieu Gerber) work on some quadrature stabilisation that is not QMC (but not too far either), with stratification over the unit cube (after a possible reparameterisation) requiring more evaluations, plus a sort of pulled-by-its-own-bootstrap control variate, but beating regular Monte Carlo in terms of convergence rate and practical precision (if accepting a large simulation budget from the start). A difficulty common to all (?) stratification proposals is that it does not readily applies to highly concentrated functions.

I chaired the lightning talks session, which were 3mn one-slide snapshots about some incoming posters selected by the scientific committee. While I appreciated the entry into the poster session, the more because it was quite crowded and busy, if full of interesting results, and enjoyed the slide solely made of “0.234”, I regret that not all poster presenters were not given the same opportunity (although I am unclear about which format would have permitted this) and that it did not attract more attendees as it took place in parallel with other sessions.

In a not-solely-ABC session, I appreciated Sirio Legramanti speaking on comparing different distance measures via Rademacher complexity, highlighting that some distances are not robust, incl. for instance some (all?) Wasserstein distances that are not defined for heavy tailed distributions like the Cauchy distribution. And using the mean as a summary statistic in such heavy tail settings comes as an issue, since the distance between simulated and observed means does not decrease in variance with the sample size, with the practical difficulty that the problem is hard to detect on real (misspecified) data since the true distribution behing (if any) is unknown. Would that imply that only intrinsic distances like maximum mean discrepancy or Kolmogorov-Smirnov are the only reasonable choices in misspecified settings?! While, in the ABC session, Jeremiah went back to this role of distances for generalised Bayesian inference, replacing likelihood by scoring rule, and requirement for Monte Carlo approximation (but is approximating an approximation that a terrible thing?!). I also discussed briefly with Alejandra Avalos on her use of pseudo-likelihoods in Ising models, which, while not the original model, is nonetheless a model and therefore to taken as such rather than as approximation.

I also enjoyed Gregor Kastner’s work on Bayesian prediction for a city (Milano) planning agent-based model relying on cell phone activities, which reminded me at a superficial level of a similar exploitation of cell usage in an attraction park in Singapore Steve Fienberg told me about during his last sabbatical in Paris.

In conclusion, an exciting meeting that should have stretched a whole week (or taken place in a less congenial environment!). The call for organising BayesComp 2025 is still open, by the way.



Posted in Mountains, pictures, Running, Statistics, Travel with tags , , , , , , , , , , , , , , , , on October 28, 2022 by xi'an

BNP13 is set in this incredible location on a massive lake (almost as large as Lac Saint Jean!) facing several tantalizing snow-capped volcanoes… My trip from Paris to Puerto Varas was quite smooth if relatively longish (but I slept close to 8 hours on the first leg and busied myself with Biometrika submissions the rest of the way). Leaving from Paris at midnight proved a double advantage as this was one of the last flights leaving, with hardly anyone in the airport. On Sunday, I arrived early enough to take a quick dip in Lake Llanquihue which was fairly cold and choppy!

Overall the conference is quite exhilarating as all talks are of interest and often covering on-going research. This may be one of the most engaging meetings I have attended in the past years! Plus a refreshing variety of topics and seniority in the speakers.

To start with a bang!, Sonia Petrone (Bocconi) gave a very nice plenary lecture in the most auspicious manner, covering her recent works on Bayesian prediction as an alternative way to run Bayesian inference (in connection with the incoming Read Paper by Fong et al.). She covered so much ground that I got lost before long (jetlag did not help!). However, an interesting feature underlying her talk is that, under exchangeability, the sequence of predictives converges to a random probability measure, a de Finetti way to construct the prior that is based on predictives. Avoiding in a sense the model and the prior on the parameters of that process. (The parameter is derived from the infinite exchangeable [or conditionally iid] sequence, but the sequence of predictives need be defined.) The drawback is that this approach involves infinite sequences, with practical truncation to a finite horizon being an approximation whose precision / error may prove elusive to characterise. The predictive approach also allows to recover a limiting Normal distribution (not a Bernstein-von Mises type!) and hence credible intervals on parameters and distributions.

While this is indeed a BNP conference (!), I was surprised to see lot of talks paying attention to clustering and even to mixtures, with again a recurrent imprecision on the meaning of a cluster. (Maybe this was already the case for BNP11 in Paris but I may have been too busy helping with catering to notice!) For instance, Brian Trippe (MIT) gave a quick intro on his (AISTATS 2022) work on parallel MCMC with coupling. As unbiased MCMC strongly improving upon naïve parallel MCMC relative to the computing cost. With an interesting example where coupling is agnostic to the labeling of random partitions in clustering problems, involving optimal transport, manageable in O(K³log(K)) time when K is the number of clusters.

EM degeneracy

Posted in pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , , , , , , , , , , on June 16, 2021 by xi'an

At the MHC 2021 conference today (to which I biked to attend for real!, first time since BayesComp!) I listened to Christophe Biernacki exposing the dangers of EM applied to mixtures in the presence of missing data, namely that the algorithm has a rising probability to reach a degenerate solution, namely a single observation component. Rising in the proportion of missing data. This is not hugely surprising as there is a real (global) mode at this solution. If one observation components are prohibited, they should not be accepted in the EM update. Just as in Bayesian analyses with improper priors, the likelihood should bar single or double  observations components… Which of course makes EM harder to implement. Or not?! MCEM, SEM and Gibbs are obviously straightforward to modify in this case.

Judith Rousseau also gave a fascinating talk on the properties of non-parametric mixtures, from a surprisingly light set of conditions for identifiability to posterior consistency . With an interesting use of several priors simultaneously that is a particular case of the cut models. Namely a correct joint distribution that cannot be a posterior, although this does not impact simulation issues. And a nice trick turning a hidden Markov chain into a fully finite hidden Markov chain as it is sufficient to recover a Bernstein von Mises asymptotic. If inefficient. Sylvain LeCorff presented a pseudo-marginal sequential sampler for smoothing, when the transition densities are replaced by unbiased estimators. With connection with approximate Bayesian computation smoothing. This proves harder than I first imagined because of the backward-sampling operations…

scalable Metropolis-Hastings, nested Monte Carlo, and normalising flows

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , , , , , , , , , , , , , , , , , , on June 16, 2020 by xi'an

Over a sunny if quarantined Sunday, I started reading the PhD dissertation of Rob Cornish, Oxford University, as I am the external member of his viva committee. Ending up in a highly pleasant afternoon discussing this thesis over a (remote) viva yesterday. (If bemoaning a lost opportunity to visit Oxford!) The introduction to the viva was most helpful and set the results within the different time and geographical zones of the Ph.D since Rob had to switch from one group of advisors in Engineering to another group in Statistics. Plus an encompassing prospective discussion, expressing pessimism at exact MCMC for complex models and looking forward further advances in probabilistic programming.

Made of three papers, the thesis includes this ICML 2019 [remember the era when there were conferences?!] paper on scalable Metropolis-Hastings, by Rob Cornish, Paul Vanetti, Alexandre Bouchard-Côté, Georges Deligiannidis, and Arnaud Doucet, which I commented last year. Which achieves a remarkable and paradoxical O(1/√n) cost per iteration, provided (global) lower bounds are found on the (local) Metropolis-Hastings acceptance probabilities since they allow for Poisson thinning à la Devroye (1986) and  second order Taylor expansions constructed for all components of the target, with the third order derivatives providing bounds. However, the variability of the acceptance probability gets higher, which induces a longer but still manageable if the concentration of the posterior is in tune with the Bernstein von Mises asymptotics. I had not paid enough attention in my first read at the strong theoretical justification for the method, relying on the convergence of MAP estimates in well- and (some) mis-specified settings. Now, I would have liked to see the paper dealing with a more complex problem that logistic regression.

The second paper in the thesis is an ICML 2018 proceeding by Tom Rainforth, Robert Cornish, Hongseok Yang, Andrew Warrington, and Frank Wood, which considers Monte Carlo problems involving several nested expectations in a non-linear manner, meaning that (a) several levels of Monte Carlo approximations are required, with associated asymptotics, and (b) the resulting overall estimator is biased. This includes common doubly intractable posteriors, obviously, as well as (Bayesian) design and control problems. [And it has nothing to do with nested sampling.] The resolution chosen by the authors is strictly plug-in, in that they replace each level in the nesting with a Monte Carlo substitute and do not attempt to reduce the bias. Which means a wide range of solutions (other than the plug-in one) could have been investigated, including bootstrap maybe. For instance, Bayesian design is presented as an application of the approach, but since it relies on the log-evidence, there exist several versions for estimating (unbiasedly) this log-evidence. Similarly, the Forsythe-von Neumann technique applies to arbitrary transforms of a primary integral. The central discussion dwells on the optimal choice of the volume of simulations at each level, optimal in terms of asymptotic MSE. Or rather asymptotic bound on the MSE. The interesting result being that the outer expectation requires the square of the number of simulations for the other expectations. Which all need converge to infinity. A trick in finding an estimator for a polynomial transform reminded me of the SAME algorithm in that it duplicated the simulations as many times as the highest power of the polynomial. (The ‘Og briefly reported on this paper… four years ago.)

The third and last part of the thesis is a proposal [to appear in ICML 20] on relaxing bijectivity constraints in normalising flows with continuously index flows. (Or CIF. As Rob made a joke about this cleaning brand, let me add (?) to that joke by mentioning that looking at CIF and bijections is less dangerous in a Trump cum COVID era at CIF and injections!) With Anthony Caterini, George Deligiannidis and Arnaud Doucet as co-authors. I am much less familiar with this area and hence a wee bit puzzled at the purpose of removing what I understand to be an appealing side of normalising flows, namely to produce a manageable representation of density functions as a combination of bijective and differentiable functions of a baseline random vector, like a standard Normal vector. The argument made in the paper is that imposing this representation of the density imposes a constraint on the topology of its support since said support is homeomorphic to the support of the baseline random vector. While the supporting theoretical argument is a mathematical theorem that shows the Lipschitz bound on the transform should be infinity in the case the supports are topologically different, these arguments may be overly theoretical when faced with the practical implications of the replacement strategy. I somewhat miss its overall strength given that the whole point seems to be in approximating a density function, based on a finite sample.

approximate Bayesian inference under informative sampling

Posted in Books, Statistics, Travel, University life with tags , , , , , , , , , on March 30, 2018 by xi'an

In the first issue of this year Biometrika, I spotted a paper with the above title, written by Wang, Kim, and Yang, and thought it was a particular case of ABC. However, when I read it on a rare metro ride to Dauphine, thanks to my hurting knee!, I got increasingly disappointed as the contents had nothing to do with ABC. The purpose of the paper was to derive a consistent and convergent posterior distribution based on a estimator of the parameter θ that is… consistent and convergent under informative sampling. Using for instance a Normal approximation to the sampling distribution of this estimator. Or to the sampling distribution of the pseudo-score function, S(θ) [which pseudo-normality reminded me of Ron Gallant’s approximations and of my comments on them]. The paper then considers a generalisation to the case of estimating equations, U(θ), which may again enjoy a Normal asymptotic distribution. Involving an object that does not make direct Bayesian sense, namely the posterior of the parameter θ given U(θ)…. (The algorithm proposed to generate from this posterior (8) is also a mystery.) Since the approach requires consistent estimators to start with and aims at reproducing frequentist coverage properties, I am thus at a loss as to why this pseudo-Bayesian framework is adopted.

%d bloggers like this: