Archive for Bernstein-von Mises theorem

scalable Metropolis-Hastings, nested Monte Carlo, and normalising flows

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , , , , , , , , , , , , , , , , , , on June 16, 2020 by xi'an

Over a sunny if quarantined Sunday, I started reading the PhD dissertation of Rob Cornish, Oxford University, as I am the external member of his viva committee. Ending up in a highly pleasant afternoon discussing this thesis over a (remote) viva yesterday. (If bemoaning a lost opportunity to visit Oxford!) The introduction to the viva was most helpful and set the results within the different time and geographical zones of the Ph.D since Rob had to switch from one group of advisors in Engineering to another group in Statistics. Plus an encompassing prospective discussion, expressing pessimism at exact MCMC for complex models and looking forward further advances in probabilistic programming.

Made of three papers, the thesis includes this ICML 2019 [remember the era when there were conferences?!] paper on scalable Metropolis-Hastings, by Rob Cornish, Paul Vanetti, Alexandre Bouchard-Côté, Georges Deligiannidis, and Arnaud Doucet, which I commented last year. Which achieves a remarkable and paradoxical O(1/√n) cost per iteration, provided (global) lower bounds are found on the (local) Metropolis-Hastings acceptance probabilities since they allow for Poisson thinning à la Devroye (1986) and  second order Taylor expansions constructed for all components of the target, with the third order derivatives providing bounds. However, the variability of the acceptance probability gets higher, which induces a longer but still manageable if the concentration of the posterior is in tune with the Bernstein von Mises asymptotics. I had not paid enough attention in my first read at the strong theoretical justification for the method, relying on the convergence of MAP estimates in well- and (some) mis-specified settings. Now, I would have liked to see the paper dealing with a more complex problem that logistic regression.

The second paper in the thesis is an ICML 2018 proceeding by Tom Rainforth, Robert Cornish, Hongseok Yang, Andrew Warrington, and Frank Wood, which considers Monte Carlo problems involving several nested expectations in a non-linear manner, meaning that (a) several levels of Monte Carlo approximations are required, with associated asymptotics, and (b) the resulting overall estimator is biased. This includes common doubly intractable posteriors, obviously, as well as (Bayesian) design and control problems. [And it has nothing to do with nested sampling.] The resolution chosen by the authors is strictly plug-in, in that they replace each level in the nesting with a Monte Carlo substitute and do not attempt to reduce the bias. Which means a wide range of solutions (other than the plug-in one) could have been investigated, including bootstrap maybe. For instance, Bayesian design is presented as an application of the approach, but since it relies on the log-evidence, there exist several versions for estimating (unbiasedly) this log-evidence. Similarly, the Forsythe-von Neumann technique applies to arbitrary transforms of a primary integral. The central discussion dwells on the optimal choice of the volume of simulations at each level, optimal in terms of asymptotic MSE. Or rather asymptotic bound on the MSE. The interesting result being that the outer expectation requires the square of the number of simulations for the other expectations. Which all need converge to infinity. A trick in finding an estimator for a polynomial transform reminded me of the SAME algorithm in that it duplicated the simulations as many times as the highest power of the polynomial. (The ‘Og briefly reported on this paper… four years ago.)

The third and last part of the thesis is a proposal [to appear in ICML 20] on relaxing bijectivity constraints in normalising flows with continuously index flows. (Or CIF. As Rob made a joke about this cleaning brand, let me add (?) to that joke by mentioning that looking at CIF and bijections is less dangerous in a Trump cum COVID era at CIF and injections!) With Anthony Caterini, George Deligiannidis and Arnaud Doucet as co-authors. I am much less familiar with this area and hence a wee bit puzzled at the purpose of removing what I understand to be an appealing side of normalising flows, namely to produce a manageable representation of density functions as a combination of bijective and differentiable functions of a baseline random vector, like a standard Normal vector. The argument made in the paper is that imposing this representation of the density imposes a constraint on the topology of its support since said support is homeomorphic to the support of the baseline random vector. While the supporting theoretical argument is a mathematical theorem that shows the Lipschitz bound on the transform should be infinity in the case the supports are topologically different, these arguments may be overly theoretical when faced with the practical implications of the replacement strategy. I somewhat miss its overall strength given that the whole point seems to be in approximating a density function, based on a finite sample.

approximate Bayesian inference under informative sampling

Posted in Books, Statistics, Travel, University life with tags , , , , , , , , , on March 30, 2018 by xi'an

In the first issue of this year Biometrika, I spotted a paper with the above title, written by Wang, Kim, and Yang, and thought it was a particular case of ABC. However, when I read it on a rare metro ride to Dauphine, thanks to my hurting knee!, I got increasingly disappointed as the contents had nothing to do with ABC. The purpose of the paper was to derive a consistent and convergent posterior distribution based on a estimator of the parameter θ that is… consistent and convergent under informative sampling. Using for instance a Normal approximation to the sampling distribution of this estimator. Or to the sampling distribution of the pseudo-score function, S(θ) [which pseudo-normality reminded me of Ron Gallant’s approximations and of my comments on them]. The paper then considers a generalisation to the case of estimating equations, U(θ), which may again enjoy a Normal asymptotic distribution. Involving an object that does not make direct Bayesian sense, namely the posterior of the parameter θ given U(θ)…. (The algorithm proposed to generate from this posterior (8) is also a mystery.) Since the approach requires consistent estimators to start with and aims at reproducing frequentist coverage properties, I am thus at a loss as to why this pseudo-Bayesian framework is adopted.

plenary talks at JSM 2017 in Baltimore

Posted in Statistics with tags , , , , , , , , , , on May 25, 2017 by xi'an

weak convergence (…) in ABC

Posted in Books, Statistics, University life with tags , , , , , , on January 18, 2016 by xi'an

Samuel Soubeyrand and Eric Haon-Lasportes recently published a paper in Statistics and Probability Letters that has some common features with the ABC consistency paper we wrote a few months ago with David Frazier and Gael Martin. And to the recent Li and Fearnhead paper on the asymptotic normality of the ABC distribution. Their approach is however based on a Bernstein-von Mises [CLT] theorem for the MLE or a pseudo-MLE. They assume that the density of this estimator is asymptotically equivalent to a Normal density, in which case the true posterior conditional on the estimator is also asymptotically equivalent to a Normal density centred at the (p)MLE. Which also makes the ABC distribution normal when both the sample size grows to infinity and the tolerance decreases to zero. Which is not completely unexpected. However, in complex settings, establishing the asymptotic normality of the (p)MLE may prove a formidable or even impossible task.

O-Bayes15 [day #1]

Posted in Books, pictures, Running, Statistics, Travel, University life, Wines with tags , , , , , , on June 3, 2015 by xi'an

vale3So here we are back together to talk about objective Bayes methods, and in the City of Valencià as well.! A move back to a city where the 1998 O’Bayes took place. In contrast with my introductory tutorial, the morning tutorials by Luis Pericchi and Judith Rousseau were investigating fairly technical and advanced, Judith looking at the tools used in the frequentist (Bernstein-von Mises) analysis of priors, with forays in empirical Bayes, giving insights into a wide range of recent papers in the field. And Luis covering works on Bayesian robustness in the sense of resisting to over-influential observations. Following works of him and of Tony O’Hagan and coauthors. Which means characterising tails of prior versus sampling distribution to allow for the posterior reverting to the prior in case of over-influential datapoints. Funny enough, after a great opening by Carmen and Ed remembering Susie, Chris Holmes also covered Bayesian robust analysis. More in the sense of incompletely or mis-  specified models. (On the side, rekindling one comment by Susie and the need to embed robust Bayesian analysis within decision theory.) Which was also much Chris’ point, in line with the recent Watson and Holmes’ paper. Dan Simpson in his usual kick-the-anthill-real-hard-and-set-fire-to-it discussion pointed out the possible discrepancy between objective and robust Bayesian analysis. (With lines like “modern statistics has proven disruptive to objective Bayes”.) Which is not that obvious because the robust approach simply reincorporates the decision theory within the objective framework. (Dan also concluded with the comic strip below, whose message can be interpreted in many ways…! Or not.)

The second talk of the afternoon was given by Veronika Ročková on a novel type of spike-and-slab prior to handle sparse regression, bringing an alternative to the standard Lasso. The prior is a mixture of two Laplace priors whose scales are constrained in connection with the actual number of non-zero coefficients. I had not heard of this approach before (although Veronika and Ed have an earlier paper on a spike-and-slab prior to handle multicolinearity that Veronika presented in Boston last year) and I was quite impressed by the combination of minimax properties and practical determination of the scales. As well as by the performances of this spike-and-slab Lasso. I am looking forward the incoming paper!

The day ended most nicely in the botanical gardens of the University of Valencià, with an outdoor reception surrounded by palm trees and parakeet cries…