Archive for improper priors

Can we have our Bayesian cake and eat it too?

Posted in Books, pictures, Statistics, University life with tags , , , , , , on January 17, 2018 by xi'an

This paper aims at solving the Bartlett-Lindley-Jeffreys paradox, i.e., the difficulty connected with improper priors in Bayes factors. The introduction is rather lengthy since by page 9 we are still (dis-)covering the Lindley paradox, along with the introduction of a special notation for -2 times the logarithm of the Bayes factor.

“We will now resolve Lindley’s paradox in both of the above examples.”

The “resolution” of the paradox stands in stating the well-known consistency of the Bayes factor, i.e., that as the sample grows to infinity it goes to infinity (almost surely) under the null hypothesis and to zero under the alternative (almost surely again, both statements being for fixed parameters.) Hence the discrepancy between a small p-value and a Bayes factor favouring the null occurs “with vanishingly small” probability. (The authors distinguish between Bartlett’s paradox associated with a prior variance going to infinity [or a prior becoming improper] and Lindley-Jeffreys’ paradox associated with a sample size going to infinity.)

“We construct cake priors using the following ingredients”

The “cake” priors are defined as pseudo-normal distributions, pseudo in the sense that they look like multivariate Normal densities, except for the covariance matrix that also depends on the parameter, as e.g. in the Fisher information matrix. This reminds me of a recent paper of Ronald Gallant in the Journal of Financial Econometrics that I discussed. With the same feature. Except for a scale factor inversely log-proportional to the dimension of the model. Now, what I find most surprising, besides the lack of parameterisation invariance, is that these priors are not normalised. They do no integrate to one. As to whether or not they integrate, the paper keeps silent about this. This is also a criticism I addressed to Gallant’s paper, getting no satisfactory answer. This is a fundamental shortcoming of the proposed cake priors…

“Hence, the relative rates that g⁰ and g¹ diverge must be considered”

The authors further argue (p.12) that by pushing the scale factors to infinity one produces the answer the Jeffreys prior would have produced. This is not correct since the way the scale factors diverge, relative to one another, drives the numerical value of the limit! Using inversely log-proportionality in the dimension(s) of the model(s) is a correct solution, from a mathematical perspective. But only from a mathematical perspective.

“…comparing the LRT and Bayesian tests…”

Since the log-Bayes factor is the log-likelihood ratio modulo the ν log(n) BIC correction, it is not very surprising that both approaches reach close answers when the scale goes to infinity and the sample size n as well. In the end, there seems to be no reason for going that path other than making likelihood ratio and Bayes factor asymptotically coincide, which does not sound like a useful goal to me. (And so does recovering BIC in the linear model.)

“No papers in the model selection literature, to our knowledge, chose different constants for each model under consideration.”

In conclusion, the paper sets up a principled or universal way to cho<a href=”https://academic.oup.com/jfec/article-abstract/14/2/265/1751312?redirectedFrom=fulltext”></a><a href=”https://xiaose “cake” priors fighting Lindley-Jeffreys’ paradox, but the choices made therein remain arbitrary. They allow for a particular limit to be found when the scale parameter(s) get to infinity, but the limit depends on the connection created between the models, which should not share parameters if one is to be chosen. (The discussion of using improper priors and arbitrary constants is aborted, resorting to custom arguments as the above.) The paper thus unfortunately does not resolve Lindley-Jeffreys’ paradox and the vexing issue of improper priors unfit for testing.

foundations of probability

Posted in Books, Statistics with tags , , , , on December 1, 2017 by xi'an

Following my reading of a note by Gunnar Taraldsen and co-authors on improper priors, I checked the 1970 book of Rényi from the Library at Warwick. (First time I visited this library, where I get very efficient help in finding and borrowing this book!)

“…estimates of probability of an event made by different persons may be different and each such estimate is to a certain extent subjective.” (p.33)

The main argument from Rényi used by the above mentioned note (and an earlier paper in The American Statistician) is that “every probability is in reality a conditional probability” (p.34). Which may be a pleonasm as everything depends on the settings in which it is applied. And as such not particularly new since conditioning is also present in e.g. Jeffreys’ book. In this approach, the definition of the conditional probability is traditional, if restricted to condition on a subset of elements from the σ algebra. The interesting part in the book is rather that a measure on this subset can be derived from the conditionals. And extended to the whole σ algebra. And is unique up to a multiplicative constant. Interesting because this indeed produces a rigorous way of handling improper priors.

“Let the random point (ξ,η) be uniformly distributed over the whole (x,y) plane.” (p.83)

Rényi also defines random variables ξ on conditional probability spaces, with conditional densities. With constraints on ξ for those to exist. I have more difficulties to ingest this notion as I do not see the meaning of the above quote or of the quantity

P(a<ξ<b|c<ξ<d)

when P(a<ξ<b) is not defined. As for instance I see no way of generating such a ξ in this case. (Of course, it is always possible to bring in a new definition of random variables that only agrees with regular ones for finite measure.)

a new paradigm for improper priors

Posted in Books, pictures, Statistics, Travel with tags , , , , , , , , on November 6, 2017 by xi'an

Gunnar Taraldsen and co-authors have arXived a short note on using improper priors from a new perspective. Generalising an earlier 2016 paper in JSPI on the same topic. Which both relate to a concept introduced by Rényi (who himself attributes the idea to Kolmogorov). Namely that random variables measures are to be associated with arbitrary measures [not necessarily σ-finite measures, the later defining σ-finite random variables], rather than those with total mass one. Which allows for an alternate notion of conditional probability in the case of σ-finite random variables, with the perk that this conditional probability distribution is itself of mass 1 (a.e.).  Which we know happens when moving from prior to proper posterior.

I remain puzzled by the 2016 paper though as I do not follow the meaning of a random variable associated with an infinite mass probability measure. If the point is limited to construct posterior probability distributions associated with improper priors, there is little value in doing so. The argument in the 2016 paper is however that one can then define a conditional distribution in marginalisation paradoxes à la Stone, Dawid and Zidek (1973) where the marginal does not exist. Solving with this formalism the said marginalisation paradoxes as conditional distributions are only defined for σ-finite random variables. Which gives a fairly different conclusion that either Stone, Dawid and Zidek (1973) [with whom I agree, namely that there is no paradox because there is no “joint” distribution] or Jaynes (1973) [with whom I less agree!, in that the use of an invariant measure to make the discrepancy go away is not a particularly strong argument in favour of this measure]. The 2016 paper also draws an interesting connection with the study by Jim Hobert and George Casella (in Jim’s thesis) of [null recurrent or transient] Gibbs samplers with no joint [proper] distribution. Which in some situations can produce proper subchains, a phenomenon later exhibited by Alan Gelfand and Sujit Sahu (and Xiao-Li Meng as well if I correctly remember!). But I see no advantage in following this formalism, as it does not impact whether the chain is transient or null recurrent, or anything connected with its implementation. Plus a link to the approximation of improper priors by sequences of proper ones by Bioche and Druihlet I discussed a while ago.

priors without likelihoods are like sloths without…

Posted in Books, Statistics with tags , , , , , , , , , , , , on September 11, 2017 by xi'an

“The idea of building priors that generate reasonable data may seem like an unusual idea…”

Andrew, Dan, and Michael arXived a opinion piece last week entitled “The prior can generally only be understood in the context of the likelihood”. Which connects to the earlier Read Paper of Gelman and Hennig I discussed last year. I cannot state strong disagreement with the positions taken in this piece, actually, in that I do not think prior distributions ever occur as a given but are rather chosen as a reference measure to probabilise the parameter space and eventually prioritise regions over others. If anything I find myself even further on the prior agnosticism gradation.  (Of course, this lack of disagreement applies to the likelihood understood as a function of both the data and the parameter, rather than of the parameter only, conditional on the data. Priors cannot be depending on the data without incurring disastrous consequences!)

“…it contradicts the conceptual principle that the prior distribution should convey only information that is available before the data have been collected.”

The first example is somewhat disappointing in that it revolves as so many Bayesian textbooks (since Laplace!) around the [sex ratio] Binomial probability parameter and concludes at the strong or long-lasting impact of the Uniform prior. I do not see much of a contradiction between the use of a Uniform prior and the collection of prior information, if only because there is not standardised way to transfer prior information into prior construction. And more fundamentally because a parameter rarely makes sense by itself, alone, without a model that relates it to potential data. As for instance in a regression model. More, following my epiphany of last semester, about the relativity of the prior, I see no damage in the prior being relevant, as I only attach a relative meaning to statements based on the posterior. Rather than trying to limit the impact of a prior, we should rather build assessment tools to measure this impact, for instance by prior predictive simulations. And this is where I come to quite agree with the authors.

“…non-identifiabilities, and near nonidentifiabilites, of complex models can lead to unexpected amounts of weight being given to certain aspects of the prior.”

Another rather straightforward remark is that non-identifiable models see the impact of a prior remain as the sample size grows. And I still see no issue with this fact in a relative approach. When the authors mention (p.7) that purely mathematical priors perform more poorly than weakly informative priors it is hard to see what they mean by this “performance”.

“…judge a prior by examining the data generating processes it favors and disfavors.”

Besides those points, I completely agree with them about the fundamental relevance of the prior as a generative process, only when the likelihood becomes available. And simulatable. (This point is found in many references, including our response to the American Statistician paper Hidden dangers of specifying noninformative priors, with Kaniav Kamary. With the same illustration on a logistic regression.) I also agree to their criticism of the marginal likelihood and Bayes factors as being so strongly impacted by the choice of a prior, if treated as absolute quantities. I also if more reluctantly and somewhat heretically see a point in using the posterior predictive for assessing whether a prior is relevant for the data at hand. At least at a conceptual level. I am however less certain about how to handle improper priors based on their recommendations. In conclusion, it would be great to see one [or more] of the authors at O-Bayes 2017 in Austin as I am sure it would stem nice discussions there! (And by the way I have no prior idea on how to conclude the comparison in the title!)

Greek variations on power-expected-posterior priors

Posted in Books, Statistics, University life with tags , , , , , , on October 5, 2016 by xi'an

Dimitris Fouskakis, Ioannis Ntzoufras and Konstantinos Perrakis, from Athens, have just arXived a paper on power-expected-posterior priors. Just like the power prior and the expected-posterior prior, this approach aims at avoiding improper priors by the use of imaginary data, which distribution is itself the marginal against another prior. (In the papers I wrote on that topic with Juan Antonio Cano and Diego Salmerón, we used MCMC to figure out a fixed point for such priors.)

The current paper (which I only perused) studies properties of two versions of power-expected-posterior priors proposed in an earlier paper by the same authors. For the normal linear model. Using a posterior derived from an unormalised powered likelihood either (DR) integrated in the imaginary data against the prior predictive distribution of the reference model based on the powered likelihood, or (CR) integrated in the imaginary data against the prior predictive distribution of the reference model based on the actual likelihood. The baseline model being the G-prior with g=n². Both versions lead to a marginal likelihood that is similar to BIC and hence consistent. The DR version coincides with the original power-expected-posterior prior in the linear case. The CR version involves a change of covariance matrix. All in all, the CR version tends to favour less complex models, but is less parsimonious as a variable selection tool, which sounds a wee bit contradictory. Overall, I thus feel (possibly incorrectly) that the paper is more an appendix to the earlier paper than a paper in itself as I do not get in the end a clear impression of which method should be preferred.

a mistake in a 1990 paper

Posted in Kids, Statistics, University life with tags , , , , , , , , on August 7, 2016 by xi'an

As we were working on the Handbook of mixture analysis with Sylvia Früwirth-Schnatter and Gilles Celeux today, near Saint-Germain des Près, I realised that there was a mistake in our 1990 mixture paper with Jean Diebolt [published in 1994], in that when we are proposing to use improper “Jeffreys” priors under the restriction that no component of the Gaussian mixture is “empty”, meaning that there are at least two observations generated from each component, the likelihood needs to be renormalised to be a density for the sample. This normalisation constant only depends on the weights of the mixture, which means that, when simulating from the full conditional distribution of the weights, there should be an extra-acceptance step to account for this correction. Of course, the term is essentially equal to one for a large enough sample but this remains a mistake nonetheless! It is funny that it remained undetected for so long in my most cited paper. Checking on Larry’s 1999 paper exploring the idea of excluding terms from the likelihood to allow for improper priors, I did not spot him using a correction either.

Nonparametric applications of Bayesian inference

Posted in Books, Statistics, University life with tags , , , , , , on April 22, 2016 by xi'an

Gary Chamberlain and Guido Imbens published this paper in the Journal of Business & Economic Statistics in 2003. I just came to read it in connection with the paper by Luke Bornn, Niel Shephard and Reza Solgi that I commented a few months ago. The setting is somewhat similar: given a finite support distribution with associated probability parameter θ, a natural prior on θ is a Dirichlet prior. This prior induces a prior on transforms of θ, whether or not they are in close form (for instance as the solution of a moment equation E[F(X,β)]=0. As in Bornn et al. In this paper, Chamberlain and Imbens argue in favour of the limiting Dirichlet with all coefficients equal to zero as a way to avoid prior dominating influence when the number of classes J goes to infinity and the data size remains fixed. But they fail to address the issue that the posterior is no longer defined since some classes get unobserved. They consider instead that the parameters corresponding to those classes are equal to zero with probability one, a convention and not a result. (The computational advantage in using the improper prior sounds at best incremental.) The notion of letting some Dirichlet hyper-parameters going to zero is somewhat foreign to a Bayesian perspective as those quantities should be either fixed or distributed according to an hyper-prior, rather than set to converge according to a certain topology that has nothing to do with prior modelling. (Another reason why setting those quantities to zero does not have the same meaning as picking a Dirac mass at zero.)

“To allow for the possibility of an improper posterior distribution…” (p.4)

This is a weird beginning of a sentence, especially when followed by a concept of expected posterior distribution, which is actually a bootstrap expectation. Not as in Bayesian bootstrap, mind. And thus this feels quite orthogonal to the Bayesian approach. I do however find most interesting this notion of constructing a true expected posterior by imposing samples that ensure properness as it reminds me of our approach to mixtures with Jean Diebolt, where (latent) allocations were prohibited to induce improper priors. The bootstrapped posterior distribution seems to be proposed mostly for assessing the impact of the prior modelling, albeit in an non-quantitative manner. (I fail to understand how the very small bootstrap sample sizes are chosen.)

Obviously, there is a massive difference between this paper and Bornn et al, where the authors use two competing priors in parallel, one on θ and one on β, which induces difficulties in setting priors since the parameter space is concentrated upon a manifold. (In which case I wonder what would happen if one implemented the preposterior idea of Berger and Pérez, 2002, to derive a fixed point solution. That we implemented recently with Diego Salmerón and Juan Antonio Caño in a paper published in Statistica Sinica.. This exhibits a similarity with the above bootstrap proposal in that the posterior gets averaged wrt another posterior.)