**A** recent paper by Mikelson and Khammash found on bioRxiv considers the (paradoxical?) mixture of nested sampling and intractable likelihood. They however cover only the case when a particle filter or another unbiased estimator of the likelihood function can be found. Unless I am missing something in the paper, this seems a very costly and convoluted approach when pseudo-marginal MCMC is available. Or the rather substantial literature on computational approaches to state-space models. Furthermore simulating under the lower likelihood constraint gets even more intricate than for standard nested sampling as the parameter space is augmented with the likelihood estimator as an extra variable. And this makes a constrained simulation the harder, to the point that the paper need resort to a Dirichlet process Gaussian mixture approximation of the constrained density. It thus sounds quite an intricate approach to the problem. (For one of the realistic examples, the authors mention a 12 hour computation on a 48 core cluster. Producing an approximation of the evidence that is not unarguably stabilised, contrary to the above.) Once again, not being completely up-to-date in sequential Monte Carlo, I may miss a difficulty in analysing such models with other methods, but the proposal seems to be highly demanding with respect to the target.

## Archive for state space model

## likelihood free nested sampling

Posted in Books, Statistics with tags auxiliary particle filter, Bayesian inference, bioRxiv, computing time, Dirichlet process Gaussian mixture, intractable likelihood, MCMC, Monte Carlo Statistical Methods, nested sampling, pseudo-marginal MCMC, state space model, statistical evidence on April 26, 2019 by xi'an## down-under ABC paper accepted in JCGS!

Posted in Books, pictures, Statistics, University life with tags ABC, Australia, auxiliary model, JCGS, journal, Journal of Computational and Graphical Statistics, Melbourne, Monash University, Mornington Peninsula, pinot gris, publication, state space model, Victoria wines on October 25, 2018 by xi'an**G**reat news!, the ABC paper we had originally started in 2012 in Melbourne with Gael Martin and Brendan MacCabe, before joining forces with David Frazier and Worapree Maneesoothorn, in expanding its scope to using auxiliary likelihoods to run ABC in state-space models, just got accepted in the Journal of Computational and Graphical Statistics. A reason to celebrate with a Mornington Peninsula Pinot Gris wine next time I visit Monash!

## ABC forecasts

Posted in Books, pictures, Statistics with tags ABC, ABC consistency, Australia, forecasting, MCMC convergence, Monash University, prediction, state space model, time series on January 9, 2018 by xi'an**M**y friends and co-authors David Frazier, Gael Martin, Brendan McCabe, and Worapree Maneesoonthorn arXived a paper on ABC forecasting at the turn of the year. ABC prediction is a natural extension of ABC inference in that, provided the full conditional of a future observation given past data and parameters is available but the posterior is not, ABC simulations of the parameters induce an approximation of the predictive. The paper thus considers the impact of this extension on the precision of the predictions. And argues that it is possible that this approximation is preferable to running MCMC in some settings. A first interesting result is that using ABC and hence conditioning on an insufficient summary statistic has no asymptotic impact on the resulting prediction, provided Bayesian concentration of the corresponding posterior takes place as in our convergence paper under revision.

“…conditioning inference about θ on η(y) rather than y makes no difference to the probabilistic statements made about [future observations]”

The above result holds both in terms of convergence in total variation and for proper scoring rules. Even though there is always a loss in accuracy in using ABC. Now, one may think this is a direct consequence of our (and others) earlier convergence results, but numerical experiments on standard time series show the distinct feature that, while the [MCMC] posterior and ABC posterior distributions on the parameters clearly differ, the predictives are more or less identical! With a potential speed gain in using ABC, although comparing parallel ABC versus non-parallel MCMC is rather delicate. For instance, a preliminary parallel ABC could be run as a burnin’ step for parallel MCMC, since all chains would then be roughly in the stationary regime. Another interesting outcome of these experiments is a case when the summary statistics produces a non-consistent ABC posterior, but still leads to a very similar predictive, as shown on this graph.This unexpected accuracy in prediction may further be exploited in state space models, towards producing particle algorithms that are greatly accelerated. Of course, an easy objection to this acceleration is that the impact of the approximation is unknown and un-assessed. However, such an acceleration leaves room for multiple implementations, possibly with different sets of summaries, to check for consistency over replicates.

## ABC in Stockholm [on-board again]

Posted in Kids, pictures, Statistics, Travel, University life with tags ABC, ABC in Helsinki, ABCruise, acquisition function, Baltic Sea, Bayesian optimisation, cabin, conference fees, cruise, Finland, gaussian process, Helsinki, sea, state space model, Stockholm, Sweden, workshop on May 18, 2016 by xi'an**A**fter a smooth cruise from Helsinki to Stockholm, a glorious sunrise over the Ålend Islands, and a morning break for getting an hasty view of the city, ABC in Helsinki (a.k.a. ABCruise) resumed while still in Stockholm. The first talk was by Laurent Calvet about dynamic (state-space) models, when the likelihood is not available and replaced with a proximity between the observed and the simulated observables, at each discrete time in the series. The authors are using a proxy predictive for the incoming observable and derive an optimal—in a non-parametric sense—bandwidth based on this proxy. Michael Gutmann then gave a presentation that somewhat connected with his talk at ABC in Roma, and poster at NIPS 2014, about using Bayesian optimisation to reduce the rejections in ABC algorithms. Which means building a model of a discrepancy or distance by Bayesian optimisation. I definitely like this perspective as it reduces the simulation to one of a discrepancy (after a learning step). And does not require a threshold. Aki Vehtari expanded on this idea with a series of illustrations. A difficulty I have with the approach is the construction of the acquisition function… The last session while pretty late was definitely exciting with talks by Richard Wilkinson on surrogate or emulator models, which goes very much in a direction I support, namely that approximate models should be accepted on their own, by Julien Stoehr with clustering and machine learning tools to incorporate more summary statistics, and Tim Meeds who concluded with two (small) talks!, centred on the notion of deterministic algorithms that explicitly incorporate the random generators within the comparison, resulting in post-simulation recentering à la Beaumont et al. (2003), plus new advances with further incorporations of those random generators turned deterministic functions within variational Bayes inference…

On Wednesday morning, we will land back in Helsinki and head back to our respective homes, after another exciting ABC in… workshop. I am terribly impressed by the way this workshop at sea operated, providing perfect opportunities for informal interactions and collaborations, without ever getting claustrophobic or dense. Enjoying very long days also helped. While it seems unlikely we can repeat this successful implementation, I hope we can aim at similar formats in the coming occurrences. Kitos paljon to our Finnish hosts!

## can we trust computer simulations? [day #2]

Posted in Books, pictures, Statistics, Travel, University life with tags ABC, chaos, climate, climatic-skeptics, design of experiments, ecological models, Ecology, epistemology, equivalence test, ergodicity, Germany, Hannover, Herrenhausen Palace, manufactured solutions, philosophy of sciences, reproducible research, simulation, sociology, state space model, synthetic likelihood, validation, verification, WYSINWYG on July 13, 2015 by xi'an*“Sometimes the models are better than the data.” G. Krinner*

**S**econd day at the conference on building trust in computer simulations. Starting with a highly debated issue, climate change projections. Since so many criticisms are addressed to climate models as being not only wrong but also unverifiable. And uncheckable. As explained by Gerhart Krinner, the IPCC has developed methodologies to compare models and evaluate predictions. However, from what I understood, this validation does not say anything about the future, which is the part of the predictions that matters. And that is attacked by critics and feeds climatic-skeptics. Because it is so easy to argue against the homogeneity of the climate evolution and for “*what you’ve seen is not what you’ll get*“! (Even though climatic-skeptics are the least likely to use this time-heterogeneity argument, being convinced as they are of the lack of human impact over the climate.) The second talk was by Viktoria Radchuk about validation in ecology. Defined here as a test of predictions against independent data (and designs). And mentioning Simon Wood’s synthetic likelihood as the Bayesian reference for conducting model choice (as a synthetic likelihoods ratio). I had never thought of this use (found in Wood’s original paper) for synthetic likelihood, I feel a bit queasy about using a synthetic likelihood ratio as a genuine likelihood ratio. Which led to a lively discussion at the end of her talk. The next talk was about validation in economics by Matteo Richiardi, who discussed state-space models where the hidden state is observed through a summary statistic, perfect playground for ABC! But Matteo opted instead for a non-parametric approach that seems to increase imprecision and that I have never seen used in state-space models. The last part of the talk was about non-ergodic models, for which checking for validity becomes much more problematic, in my opinion. Unless one manages multiple observations of the non-ergodic path. Nicole Saam concluded this “Validation in…” morning with Validation in Sociology. With a more pessimistic approach to the possibility of finding a falsifying strategy, because of the vague nature of sociology models. For which data can never be fully informative. She illustrated the issue with an EU negotiation analysis. Where most hypotheses could hardly be tested.

“Bayesians persist with poor examples of randomness.” L. Smith

“Bayesians can be extremely reasonable.” L. Smith

The afternoon session was dedicated to methodology, mostly statistics! Andrew Robinson started with a talk on (frequentist) model validation. Called splitters and lumpers. Illustrated by a forest growth model. He went through traditional hypothesis tests like Neyman-Pearson’s that try to split between samples. And (bio)equivalence tests that take difference as the null. Using his equivalence R package. Then Leonard Smith took over [in a literal way!] from a sort-of-Bayesian perspective, in a work joint with Jim Berger and Gary Rosner on pragmatic Bayes which was mostly negative about Bayesian modelling. Introducing (to me) the compelling notion of structural model error as a representation of the inadequacy of the model. With illustrations from weather and climate models. His criticism of the Bayesian approach is that it cannot be holistic while pretending to be [my wording]. And being inadequate to measure model inadequacy, to the point of making prior choice meaningless. Funny enough, he went back to the ball dropping experiment David Higdon discussed at one JSM I attended a while ago, with the unexpected outcome that one ball did not make it to the bottom of the shaft. A more positive side was that posteriors are useful models but should not be interpreted from a probabilistic perspective. Move beyond probability was his final message. (For most of the talk, I misunderstood P(BS), the probability of a big surprise, for something else…) This was certainly the most provocative talk of the conference and the discussion could have gone on for the rest of day! Somewhat, Lenny was voluntarily provocative in piling the responsibility upon the Bayesian’s head for being overconfident and not accounting for the physicist’ limitations in modelling the phenomenon of interest. Next talk was by Edward Dougherty on methods used in biology. He separated within-model uncertainty from outside-model inadequacy. The within model part is mostly easy to agree upon. Even though difficulties in estimating parameters creates uncertainty classes of models. Especially because of being from a small data discipline. He analysed the impact of machine learning techniques like classification as being useless without prior knowledge. And argued in favour of the Bayesian minimum mean square error estimator. Which can also lead to a classifier. And experimental design. (Using MSE seems rather reductive when facing large dimensional parameters.) Last talk of the day was by Nicolas Becu, a geographer, with a surprising approach to validation via stakeholders. A priori not too enticing a name! The discussion was of a more philosophical nature, going back to (re)define validation against reality and imperfect models. And including social aspects of validation, e.g., reality being socially constructed. This led to the stakeholders, because a model is then a shared representation. Nicolas illustrated the construction by simulation “games” of a collective model in a community of Thai farmers and in a group of water users.

In a rather unique fashion, we also had an evening discussion on points we share and points we disagreed upon. After dinner (and wine), which did not help I fear! Bill Oberkampf mentioned the use of manufactured solutions to check code, which seemed very much related to physics. But then we got mired into the necessity of dividing between verification and validation. Which sounded very and too much engineering-like to me. Maybe because I do not usually integrate coding errors and algorithmic errors into my reasoning (verification)… Although sharing code and making it available makes a big difference. Or maybe because considering *all* models are wrong is neither part of my methodology (validation). This part ended up in a fairly pessimistic conclusion on the lack of trust in most published articles. At least in the biological sciences.